![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | syl5eqel 2843 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | syl6eleqr 2850 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 df-clel 2756 |
This theorem is referenced by: riotacl2 6788 rankelun 8910 rankelpr 8911 rankelop 8912 cdivcncf 22941 itg1addlem4 23685 cxpcn3 24709 bposlem4 25232 mirauto 25799 ldgenpisyslem1 30556 nosepdm 32161 relowlpssretop 33541 mapfzcons 37799 fourierdlem62 40906 fourierdlem63 40907 |
Copyright terms: Public domain | W3C validator |