![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3dvdsdecOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 3dvdsdec 15101 as of 8-Sep-2021. (Contributed by AV, 14-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 |
3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dvdsdecOLD | ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdecOLD 11533 | . . . 4 ⊢ ;𝐴𝐵 = ((10 · 𝐴) + 𝐵) | |
2 | df-10OLD 11125 | . . . . . . 7 ⊢ 10 = (9 + 1) | |
3 | 2 | oveq1i 6700 | . . . . . 6 ⊢ (10 · 𝐴) = ((9 + 1) · 𝐴) |
4 | 9cn 11146 | . . . . . . 7 ⊢ 9 ∈ ℂ | |
5 | ax-1cn 10032 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
6 | 3dvdsdec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
7 | 6 | nn0cni 11342 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
8 | 4, 5, 7 | adddiri 10089 | . . . . . 6 ⊢ ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴)) |
9 | 7 | mulid2i 10081 | . . . . . . 7 ⊢ (1 · 𝐴) = 𝐴 |
10 | 9 | oveq2i 6701 | . . . . . 6 ⊢ ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴) |
11 | 3, 8, 10 | 3eqtri 2677 | . . . . 5 ⊢ (10 · 𝐴) = ((9 · 𝐴) + 𝐴) |
12 | 11 | oveq1i 6700 | . . . 4 ⊢ ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵) |
13 | 4, 7 | mulcli 10083 | . . . . 5 ⊢ (9 · 𝐴) ∈ ℂ |
14 | 3dvdsdec.b | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
15 | 14 | nn0cni 11342 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
16 | 13, 7, 15 | addassi 10086 | . . . 4 ⊢ (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵)) |
17 | 1, 12, 16 | 3eqtri 2677 | . . 3 ⊢ ;𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵)) |
18 | 17 | breq2i 4693 | . 2 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
19 | 3z 11448 | . . 3 ⊢ 3 ∈ ℤ | |
20 | 6 | nn0zi 11440 | . . . 4 ⊢ 𝐴 ∈ ℤ |
21 | 14 | nn0zi 11440 | . . . 4 ⊢ 𝐵 ∈ ℤ |
22 | zaddcl 11455 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ) | |
23 | 20, 21, 22 | mp2an 708 | . . 3 ⊢ (𝐴 + 𝐵) ∈ ℤ |
24 | 9nn 11230 | . . . . . 6 ⊢ 9 ∈ ℕ | |
25 | 24 | nnzi 11439 | . . . . 5 ⊢ 9 ∈ ℤ |
26 | zmulcl 11464 | . . . . 5 ⊢ ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ) | |
27 | 25, 20, 26 | mp2an 708 | . . . 4 ⊢ (9 · 𝐴) ∈ ℤ |
28 | zmulcl 11464 | . . . . . . 7 ⊢ ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ) | |
29 | 19, 20, 28 | mp2an 708 | . . . . . 6 ⊢ (3 · 𝐴) ∈ ℤ |
30 | dvdsmul1 15050 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴))) | |
31 | 19, 29, 30 | mp2an 708 | . . . . 5 ⊢ 3 ∥ (3 · (3 · 𝐴)) |
32 | 3t3e9 11218 | . . . . . . . 8 ⊢ (3 · 3) = 9 | |
33 | 32 | eqcomi 2660 | . . . . . . 7 ⊢ 9 = (3 · 3) |
34 | 33 | oveq1i 6700 | . . . . . 6 ⊢ (9 · 𝐴) = ((3 · 3) · 𝐴) |
35 | 3cn 11133 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
36 | 35, 35, 7 | mulassi 10087 | . . . . . 6 ⊢ ((3 · 3) · 𝐴) = (3 · (3 · 𝐴)) |
37 | 34, 36 | eqtri 2673 | . . . . 5 ⊢ (9 · 𝐴) = (3 · (3 · 𝐴)) |
38 | 31, 37 | breqtrri 4712 | . . . 4 ⊢ 3 ∥ (9 · 𝐴) |
39 | 27, 38 | pm3.2i 470 | . . 3 ⊢ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴)) |
40 | dvdsadd2b 15075 | . . 3 ⊢ ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))) | |
41 | 19, 23, 39, 40 | mp3an 1464 | . 2 ⊢ (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))) |
42 | 18, 41 | bitr4i 267 | 1 ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 1c1 9975 + caddc 9977 · cmul 9979 3c3 11109 9c9 11115 10c10 11116 ℕ0cn0 11330 ℤcz 11415 ;cdc 11531 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-10OLD 11125 df-n0 11331 df-z 11416 df-dec 11532 df-dvds 15028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |