![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3dec | Structured version Visualization version GIF version |
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dec.a | ⊢ 𝐴 ∈ ℕ0 |
3dec.b | ⊢ 𝐵 ∈ ℕ0 |
Ref | Expression |
---|---|
3dec | ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 11699 | . 2 ⊢ ;;𝐴𝐵𝐶 = ((;10 · ;𝐴𝐵) + 𝐶) | |
2 | dfdec10 11699 | . . . . . 6 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
3 | 2 | oveq2i 6804 | . . . . 5 ⊢ (;10 · ;𝐴𝐵) = (;10 · ((;10 · 𝐴) + 𝐵)) |
4 | 1nn 11233 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
5 | 4 | decnncl2 11727 | . . . . . . 7 ⊢ ;10 ∈ ℕ |
6 | 5 | nncni 11232 | . . . . . 6 ⊢ ;10 ∈ ℂ |
7 | 3dec.a | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 11506 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
9 | 6, 8 | mulcli 10247 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℂ |
10 | 3dec.b | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
11 | 10 | nn0cni 11506 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
12 | 6, 9, 11 | adddii 10252 | . . . . 5 ⊢ (;10 · ((;10 · 𝐴) + 𝐵)) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
13 | 3, 12 | eqtri 2793 | . . . 4 ⊢ (;10 · ;𝐴𝐵) = ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) |
14 | 6, 6, 8 | mulassi 10251 | . . . . . . 7 ⊢ ((;10 · ;10) · 𝐴) = (;10 · (;10 · 𝐴)) |
15 | 14 | eqcomi 2780 | . . . . . 6 ⊢ (;10 · (;10 · 𝐴)) = ((;10 · ;10) · 𝐴) |
16 | 6 | sqvali 13150 | . . . . . . . 8 ⊢ (;10↑2) = (;10 · ;10) |
17 | 16 | eqcomi 2780 | . . . . . . 7 ⊢ (;10 · ;10) = (;10↑2) |
18 | 17 | oveq1i 6803 | . . . . . 6 ⊢ ((;10 · ;10) · 𝐴) = ((;10↑2) · 𝐴) |
19 | 15, 18 | eqtri 2793 | . . . . 5 ⊢ (;10 · (;10 · 𝐴)) = ((;10↑2) · 𝐴) |
20 | 19 | oveq1i 6803 | . . . 4 ⊢ ((;10 · (;10 · 𝐴)) + (;10 · 𝐵)) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
21 | 13, 20 | eqtri 2793 | . . 3 ⊢ (;10 · ;𝐴𝐵) = (((;10↑2) · 𝐴) + (;10 · 𝐵)) |
22 | 21 | oveq1i 6803 | . 2 ⊢ ((;10 · ;𝐴𝐵) + 𝐶) = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
23 | 1, 22 | eqtri 2793 | 1 ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6793 0cc0 10138 1c1 10139 + caddc 10141 · cmul 10143 2c2 11272 ℕ0cn0 11494 ;cdc 11695 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-seq 13009 df-exp 13068 |
This theorem is referenced by: 3dvds2dec 15265 |
Copyright terms: Public domain | W3C validator |