MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dec Structured version   Visualization version   GIF version

Theorem 3dec 13257
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a 𝐴 ∈ ℕ0
3dec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dec 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 11699 . 2 𝐴𝐵𝐶 = ((10 · 𝐴𝐵) + 𝐶)
2 dfdec10 11699 . . . . . 6 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
32oveq2i 6804 . . . . 5 (10 · 𝐴𝐵) = (10 · ((10 · 𝐴) + 𝐵))
4 1nn 11233 . . . . . . . 8 1 ∈ ℕ
54decnncl2 11727 . . . . . . 7 10 ∈ ℕ
65nncni 11232 . . . . . 6 10 ∈ ℂ
7 3dec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 11506 . . . . . . 7 𝐴 ∈ ℂ
96, 8mulcli 10247 . . . . . 6 (10 · 𝐴) ∈ ℂ
10 3dec.b . . . . . . 7 𝐵 ∈ ℕ0
1110nn0cni 11506 . . . . . 6 𝐵 ∈ ℂ
126, 9, 11adddii 10252 . . . . 5 (10 · ((10 · 𝐴) + 𝐵)) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
133, 12eqtri 2793 . . . 4 (10 · 𝐴𝐵) = ((10 · (10 · 𝐴)) + (10 · 𝐵))
146, 6, 8mulassi 10251 . . . . . . 7 ((10 · 10) · 𝐴) = (10 · (10 · 𝐴))
1514eqcomi 2780 . . . . . 6 (10 · (10 · 𝐴)) = ((10 · 10) · 𝐴)
166sqvali 13150 . . . . . . . 8 (10↑2) = (10 · 10)
1716eqcomi 2780 . . . . . . 7 (10 · 10) = (10↑2)
1817oveq1i 6803 . . . . . 6 ((10 · 10) · 𝐴) = ((10↑2) · 𝐴)
1915, 18eqtri 2793 . . . . 5 (10 · (10 · 𝐴)) = ((10↑2) · 𝐴)
2019oveq1i 6803 . . . 4 ((10 · (10 · 𝐴)) + (10 · 𝐵)) = (((10↑2) · 𝐴) + (10 · 𝐵))
2113, 20eqtri 2793 . . 3 (10 · 𝐴𝐵) = (((10↑2) · 𝐴) + (10 · 𝐵))
2221oveq1i 6803 . 2 ((10 · 𝐴𝐵) + 𝐶) = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
231, 22eqtri 2793 1 𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  (class class class)co 6793  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  2c2 11272  0cn0 11494  cdc 11695  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-seq 13009  df-exp 13068
This theorem is referenced by:  3dvds2dec  15265
  Copyright terms: Public domain W3C validator