![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cyclfrgrrn | Structured version Visualization version GIF version |
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
3cyclfrgrrn1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
3cyclfrgrrn1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
3cyclfrgrrn | ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cyclfrgrrn1.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | fvex 6239 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
4 | hashgt12el2 13249 | . . . . . . . 8 ⊢ ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) | |
5 | 3, 4 | mp3an1 1451 | . . . . . . 7 ⊢ ((1 < (#‘𝑉) ∧ 𝑎 ∈ 𝑉) → ∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥) |
6 | simpr 476 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph ) | |
7 | pm3.22 464 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) | |
8 | 7 | 3adant2 1100 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
10 | simpl2 1085 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎 ≠ 𝑥) | |
11 | 3cyclfrgrrn1.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
12 | 1, 11 | 3cyclfrgrrn1 27265 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) ∧ 𝑎 ≠ 𝑥) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
13 | 6, 9, 10, 12 | syl3anc 1366 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ∧ 𝑎 ∈ 𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
14 | 13 | 3exp1 1305 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑉 → (𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
15 | 14 | rexlimiv 3056 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑉 𝑎 ≠ 𝑥 → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
16 | 5, 15 | syl 17 | . . . . . 6 ⊢ ((1 < (#‘𝑉) ∧ 𝑎 ∈ 𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
17 | 16 | expcom 450 | . . . . 5 ⊢ (𝑎 ∈ 𝑉 → (1 < (#‘𝑉) → (𝑎 ∈ 𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))) |
18 | 17 | pm2.43a 54 | . . . 4 ⊢ (𝑎 ∈ 𝑉 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
19 | 18 | com13 88 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))) |
20 | 19 | imp 444 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → (𝑎 ∈ 𝑉 → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
21 | 20 | ralrimiv 2994 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 Vcvv 3231 {cpr 4212 class class class wbr 4685 ‘cfv 5926 1c1 9975 < clt 10112 #chash 13157 Vtxcvtx 25919 Edgcedg 25984 FriendGraph cfrgr 27236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-edg 25985 df-umgr 26023 df-usgr 26091 df-frgr 27237 |
This theorem is referenced by: 3cyclfrgrrn2 27267 3cyclfrgr 27268 |
Copyright terms: Public domain | W3C validator |