MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgrrn Structured version   Visualization version   GIF version

Theorem 3cyclfrgrrn 27266
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
3cyclfrgrrn1.v 𝑉 = (Vtx‘𝐺)
3cyclfrgrrn1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3cyclfrgrrn ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Distinct variable groups:   𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐺,𝑎   𝑉,𝑎,𝑏,𝑐   𝐺,𝑏,𝑐,𝑎

Proof of Theorem 3cyclfrgrrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3cyclfrgrrn1.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
2 fvex 6239 . . . . . . . . 9 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2726 . . . . . . . 8 𝑉 ∈ V
4 hashgt12el2 13249 . . . . . . . 8 ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
53, 4mp3an1 1451 . . . . . . 7 ((1 < (#‘𝑉) ∧ 𝑎𝑉) → ∃𝑥𝑉 𝑎𝑥)
6 simpr 476 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝐺 ∈ FriendGraph )
7 pm3.22 464 . . . . . . . . . . . 12 ((𝑥𝑉𝑎𝑉) → (𝑎𝑉𝑥𝑉))
873adant2 1100 . . . . . . . . . . 11 ((𝑥𝑉𝑎𝑥𝑎𝑉) → (𝑎𝑉𝑥𝑉))
98adantr 480 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → (𝑎𝑉𝑥𝑉))
10 simpl2 1085 . . . . . . . . . 10 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → 𝑎𝑥)
11 3cyclfrgrrn1.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
121, 113cyclfrgrrn1 27265 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑥𝑉) ∧ 𝑎𝑥) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
136, 9, 10, 12syl3anc 1366 . . . . . . . . 9 (((𝑥𝑉𝑎𝑥𝑎𝑉) ∧ 𝐺 ∈ FriendGraph ) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
14133exp1 1305 . . . . . . . 8 (𝑥𝑉 → (𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1514rexlimiv 3056 . . . . . . 7 (∃𝑥𝑉 𝑎𝑥 → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
165, 15syl 17 . . . . . 6 ((1 < (#‘𝑉) ∧ 𝑎𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1716expcom 450 . . . . 5 (𝑎𝑉 → (1 < (#‘𝑉) → (𝑎𝑉 → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))))
1817pm2.43a 54 . . . 4 (𝑎𝑉 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
1918com13 88 . . 3 (𝐺 ∈ FriendGraph → (1 < (#‘𝑉) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))))
2019imp 444 . 2 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → (𝑎𝑉 → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
2120ralrimiv 2994 1 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  {cpr 4212   class class class wbr 4685  cfv 5926  1c1 9975   < clt 10112  #chash 13157  Vtxcvtx 25919  Edgcedg 25984   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-umgr 26023  df-usgr 26091  df-frgr 27237
This theorem is referenced by:  3cyclfrgrrn2  27267  3cyclfrgr  27268
  Copyright terms: Public domain W3C validator