![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3cn | Structured version Visualization version GIF version |
Description: The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) |
Ref | Expression |
---|---|
3cn | ⊢ 3 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11132 | . 2 ⊢ 3 ∈ ℝ | |
2 | 1 | recni 10090 | 1 ⊢ 3 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ℂcc 9972 3c3 11109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rrecex 10046 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-2 11117 df-3 11118 |
This theorem is referenced by: 3ex 11134 4m1e3 11176 3p2e5 11198 3p3e6 11199 4p4e8 11202 5p4e9 11205 6p4e10OLD 11209 3t1e3 11216 3t2e6 11217 3t3e9 11218 8th4div3 11290 halfpm6th 11291 6p4e10 11636 9t8e72 11707 halfthird 11723 fzo0to42pr 12595 sq3 13001 expnass 13010 fac3 13107 4bc3eq4 13155 sqrlem7 14033 caurcvgr 14448 bpoly2 14832 bpoly3 14833 bpoly4 14834 sin01bnd 14959 cos01bnd 14960 cos1bnd 14961 cos2bnd 14962 cos01gt0 14965 rpnnen2lem3 14989 rpnnen2lem11 14997 3dvdsdec 15101 3dvdsdecOLD 15102 3dvds2dec 15103 3dvds2decOLD 15104 3lcm2e6woprm 15375 prmo3 15792 2exp6 15842 2exp16 15844 7prm 15864 13prm 15870 17prm 15871 19prm 15872 37prm 15875 43prm 15876 83prm 15877 139prm 15878 163prm 15879 317prm 15880 631prm 15881 prmo4 15882 1259lem1 15885 1259lem2 15886 1259lem3 15887 1259lem4 15888 1259lem5 15889 1259prm 15890 2503lem1 15891 2503lem2 15892 2503lem3 15893 2503prm 15894 4001lem1 15895 4001lem2 15896 4001lem3 15897 4001lem4 15898 4001prm 15899 iblitg 23580 tangtx 24302 sincos6thpi 24312 sincos3rdpi 24313 pige3 24314 ang180lem2 24585 1cubr 24614 dcubic1lem 24615 dcubic2 24616 dcubic1 24617 dcubic 24618 mcubic 24619 cubic2 24620 cubic 24621 binom4 24622 quart1cl 24626 quart1lem 24627 quart1 24628 quartlem1 24629 quartlem3 24631 log2cnv 24716 log2tlbnd 24717 log2ublem2 24719 log2ublem3 24720 log2ub 24721 basellem5 24856 basellem8 24859 basellem9 24860 cht3 24944 ppiub 24974 chtub 24982 bclbnd 25050 bposlem6 25059 bposlem8 25061 bposlem9 25062 lgsdir2lem1 25095 lgsdir2lem5 25099 2lgslem3b 25167 2lgslem3d 25169 2lgsoddprmlem3c 25182 2lgsoddprmlem3d 25183 pntibndlem1 25323 pntlemk 25340 ex-opab 27419 ex-exp 27437 ex-dvds 27443 ex-gcd 27444 ex-lcm 27445 ex-prmo 27446 ex-ind-dvds 27448 fib5 30595 fib6 30596 hgt750lem 30857 hgt750lem2 30858 hgt750leme 30864 problem4 31688 problem5 31689 sinccvglem 31692 pigt3 33532 mblfinlem3 33578 itg2addnclem2 33592 itg2addnclem3 33593 heiborlem6 33745 heiborlem7 33746 jm2.23 37880 inductionexd 38770 lhe4.4ex1a 38845 stoweidlem13 40548 stoweidlem26 40561 stoweidlem34 40569 wallispilem4 40603 wallispi2lem1 40606 fmtno5lem1 41790 fmtno5lem2 41791 257prm 41798 fmtno4prmfac 41809 fmtno4nprmfac193 41811 139prmALT 41836 127prm 41840 mod42tp1mod8 41844 3exp4mod41 41858 41prothprmlem2 41860 6even 41945 gbpart8 41981 sbgoldbwt 41990 sbgoldbst 41991 evengpop3 42011 evengpoap3 42012 nnsum4primeseven 42013 nnsum4primesevenALTV 42014 2t6m3t4e0 42451 linevalexample 42509 zlmodzxzequa 42610 zlmodzxzequap 42613 |
Copyright terms: Public domain | W3C validator |