Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3g Structured version   Visualization version   GIF version

Theorem 3brtr3g 4819
 Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 4795 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 208 1 (𝜑𝐶𝑅𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   class class class wbr 4786 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787 This theorem is referenced by:  syl5eqbrr  4822  syl6breq  4827  ssenen  8290  adderpq  9980  mulerpq  9981  ltaddnq  9998  ege2le3  15026  ovolfiniun  23489  dvfsumlem3  24011  basellem9  25036  pnt2  25523  pnt  25524  siilem1  28046  omndaddr  30047  ogrpaddltrd  30060
 Copyright terms: Public domain W3C validator