![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 267 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 265 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: pm4.78 607 xor 971 cases2 1034 nannan 1588 nic-ax 1735 2sb5 2568 2sb6 2569 2sb5rf 2576 moabs 2627 2mo2 2676 2eu7 2685 2eu8 2686 r3al 3066 r2exlem 3185 risset 3188 r19.35 3210 ralxpxfr2d 3454 reuind 3540 undif3 4019 undif3OLD 4020 unab 4025 inab 4026 n0el 4071 inssdif0 4078 ssundif 4184 ralf0 4210 raldifsnb 4459 pwtp 4571 unipr 4589 uni0b 4603 iinuni 4749 reusv2lem4 5009 pwtr 5058 elxp2OLD 5278 opthprc 5312 xpiundir 5319 xpsspw 5377 relun 5379 inopab 5396 difopab 5397 ralxpf 5412 dmiun 5476 inisegn0 5643 rniun 5689 imaco 5789 mptfnf 6164 fnopabg 6166 dff1o2 6291 brprcneu 6333 idref 6650 imaiun 6654 sorpss 7095 opabex3d 7298 opabex3 7299 ovmptss 7414 fnsuppres 7479 rankc1 8894 aceq1 9101 dfac10 9122 fin41 9429 axgroth6 9813 genpass 9994 infm3 11145 prime 11621 elixx3g 12352 elfz2 12497 elfzuzb 12500 rpnnen2lem12 15124 divalgb 15300 1nprm 15565 maxprmfct 15594 vdwmc 15855 imasleval 16374 issubm 17519 issubg3 17784 efgrelexlemb 18334 ist1-2 21324 unisngl 21503 elflim2 21940 isfcls 21985 istlm 22160 isnlm 22651 ishl2 23337 erclwwlkref 27114 erclwwlknref 27171 0wlk 27239 h1de2ctlem 28694 nonbooli 28790 5oalem7 28799 ho01i 28967 rnbra 29246 cvnbtwn3 29427 chrelat2i 29504 moel 29603 difrab2 29617 uniinn0 29644 disjex 29683 maprnin 29786 ordtconnlem1 30250 esum2dlem 30434 eulerpartgbij 30714 eulerpartlemr 30716 eulerpartlemn 30723 ballotlem2 30830 bnj976 31126 bnj1185 31142 bnj543 31241 bnj571 31254 bnj611 31266 bnj916 31281 bnj1000 31289 bnj1040 31318 iscvm 31519 untuni 31864 dfso3 31879 dffr5 31921 elima4 31955 brtxpsd3 32280 brbigcup 32282 fixcnv 32292 ellimits 32294 elfuns 32299 brimage 32310 brcart 32316 brimg 32321 brapply 32322 brcup 32323 brcap 32324 dfrdg4 32335 dfint3 32336 ellines 32536 elicc3 32588 bj-ssb1 32910 bj-snsetex 33228 bj-snglc 33234 bj-projun 33259 bj-vjust2 33292 wl-cases2-dnf 33577 poimirlem27 33718 mblfinlem2 33729 iscrngo2 34078 ralanid 34304 n0elqs 34391 inxpxrn 34445 prtlem70 34614 prtlem100 34617 prtlem15 34633 prter2 34639 lcvnbtwn3 34787 ishlat1 35111 ishlat2 35112 hlrelat2 35161 islpln5 35293 islvol5 35337 pclclN 35649 cdleme0nex 36049 aaitgo 38203 isdomn3 38253 imaiun1 38414 relexp0eq 38464 ntrk1k3eqk13 38819 2sbc6g 39087 2sbc5g 39088 2reu7 41666 2reu8 41667 alsconv 43018 |
Copyright terms: Public domain | W3C validator |