![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr2d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
3bitr2d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr2rd | ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3bitr2d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 271 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3bitr2d.3 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
5 | 3, 4 | bitr2d 269 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: fnsuppres 7491 addsubeq4 10488 muleqadd 10863 mulle0b 11086 adddivflid 12813 om2uzlti 12943 summodnegmod 15214 qnumdenbi 15654 dprdf11 18622 lvecvscan2 19314 mdetunilem9 20628 elfilss 21881 itg2seq 23708 itg2cnlem2 23728 chpchtsum 25143 bposlem7 25214 lgsdilem 25248 lgsne0 25259 colhp 25861 axcontlem7 26049 pjnorm2 28895 cdj3lem1 29602 zrhchr 30329 dochfln0 37268 mapdindp 37462 |
Copyright terms: Public domain | W3C validator |