Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem5 Structured version   Visualization version   GIF version

Theorem 3atlem5 35296
Description: Lemma for 3at 35299. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3atlem5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))

Proof of Theorem 3atlem5
StepHypRef Expression
1 oveq2 6804 . . . . . 6 (𝑈 = 𝑃 → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑇) 𝑃))
21eqcoms 2779 . . . . 5 (𝑃 = 𝑈 → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑇) 𝑃))
32breq2d 4799 . . . 4 (𝑃 = 𝑈 → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑃)))
42eqeq2d 2781 . . . 4 (𝑃 = 𝑈 → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑃)))
53, 4imbi12d 333 . . 3 (𝑃 = 𝑈 → ((((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)) ↔ (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑃) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑃))))
6 simp1l 1239 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)))
7 simp1r1 1353 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑅 (𝑃 𝑄))
8 simp2 1131 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → 𝑃𝑈)
9 simp1r3 1355 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ¬ 𝑄 (𝑃 𝑈))
10 simp3 1132 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈))
11 3at.l . . . . . 6 = (le‘𝐾)
12 3at.j . . . . . 6 = (join‘𝐾)
13 3at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1411, 12, 133atlem3 35294 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑈 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
156, 7, 8, 9, 10, 14syl131anc 1489 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈 ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
16153expia 1114 . . 3 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) ∧ 𝑃𝑈) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
17 simp11 1245 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝐾 ∈ HL)
18 simp123 1391 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑅𝐴)
19 simp122 1390 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑄𝐴)
20 simp121 1389 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑃𝐴)
2118, 19, 203jca 1122 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → (𝑅𝐴𝑄𝐴𝑃𝐴))
22 simp131 1392 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑆𝐴)
23 simp132 1393 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑇𝐴)
2422, 23jca 501 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → (𝑆𝐴𝑇𝐴))
25 simp21 1248 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → ¬ 𝑅 (𝑃 𝑄))
26 simp22 1249 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑃𝑄)
2711, 12, 13hlatexch2 35205 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑅 𝑄) → 𝑅 (𝑃 𝑄)))
2817, 20, 18, 19, 26, 27syl131anc 1489 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → (𝑃 (𝑅 𝑄) → 𝑅 (𝑃 𝑄)))
2925, 28mtod 189 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → ¬ 𝑃 (𝑅 𝑄))
3017hllatd 35173 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝐾 ∈ Lat)
31 eqid 2771 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3231, 13atbase 35098 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
3318, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑅 ∈ (Base‘𝐾))
3431, 13atbase 35098 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3520, 34syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑃 ∈ (Base‘𝐾))
3631, 13atbase 35098 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3719, 36syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑄 ∈ (Base‘𝐾))
3831, 11, 12latnlej1r 17278 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝑄)
3930, 33, 35, 37, 25, 38syl131anc 1489 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → 𝑅𝑄)
40 simp3 1132 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃))
4111, 12, 133atlem4 35295 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ (𝑆𝐴𝑇𝐴)) ∧ (¬ 𝑃 (𝑅 𝑄) ∧ 𝑅𝑄) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → ((𝑅 𝑄) 𝑃) = ((𝑆 𝑇) 𝑃))
4217, 21, 24, 29, 39, 40, 41syl321anc 1498 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)) → ((𝑅 𝑄) 𝑃) = ((𝑆 𝑇) 𝑃))
43423expia 1114 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → (((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃) → ((𝑅 𝑄) 𝑃) = ((𝑆 𝑇) 𝑃)))
44 simpl1 1227 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝐾 ∈ HL)
4544hllatd 35173 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝐾 ∈ Lat)
46 simpl21 1320 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑃𝐴)
4746, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑃 ∈ (Base‘𝐾))
48 simpl22 1322 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑄𝐴)
4948, 36syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑄 ∈ (Base‘𝐾))
50 simpl23 1324 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑅𝐴)
5150, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → 𝑅 ∈ (Base‘𝐾))
5231, 12latj31 17307 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑅) = ((𝑅 𝑄) 𝑃))
5345, 47, 49, 51, 52syl13anc 1478 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → ((𝑃 𝑄) 𝑅) = ((𝑅 𝑄) 𝑃))
5453breq1d 4797 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑃) ↔ ((𝑅 𝑄) 𝑃) ((𝑆 𝑇) 𝑃)))
5553eqeq1d 2773 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑃) ↔ ((𝑅 𝑄) 𝑃) = ((𝑆 𝑇) 𝑃)))
5643, 54, 553imtr4d 283 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑃) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑃)))
575, 16, 56pm2.61ne 3028 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈))) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
58573impia 1109 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄 ∧ ¬ 𝑄 (𝑃 𝑈)) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  Latclat 17253  Atomscatm 35072  HLchlt 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160
This theorem is referenced by:  3atlem6  35297  3atlem7  35298
  Copyright terms: Public domain W3C validator