MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1091
Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1084 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1087 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 267 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  3com13OLD  1433  an33rean  1595  nnmcan  7885  odupos  17356  wwlks2onsym  27100  frgr3v  27450  bnj345  31110  bnj1098  31182  pocnv  31981  btwnswapid2  32452  colinbtwnle  32552  uunT11p2  39545  uunT12p5  39551  uun2221p2  39562
  Copyright terms: Public domain W3C validator