![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm23 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
3anidm23.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
3anidm23 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm23.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3expa 1112 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) |
3 | 2 | anabss3 899 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: supsn 8543 infsn 8575 grusn 9818 subeq0 10499 halfaddsub 11457 avglt2 11463 modabs2 12898 efsub 15029 sinmul 15101 divalgmod 15331 divalgmodOLD 15332 modgcd 15455 pythagtriplem4 15726 pythagtriplem16 15737 pltirr 17164 latjidm 17275 latmidm 17287 ipopos 17361 mulgmodid 17782 f1omvdcnv 18064 lsmss1 18279 zntoslem 20107 obsipid 20268 smadiadetlem2 20672 smadiadet 20678 ordtt1 21385 xmet0 22348 nmsq 23194 tchcphlem3 23232 tchcph 23236 grpoidinvlem1 27667 grpodivid 27705 nvmid 27823 ipidsq 27874 5oalem1 28822 3oalem2 28831 unopf1o 29084 unopnorm 29085 hmopre 29091 ballotlemfc0 30863 ballotlemfcc 30864 pdivsq 31942 gcdabsorb 31945 cgr3rflx 32467 endofsegid 32498 tailini 32677 nnssi2 32760 nndivlub 32763 brin2 34490 opoccl 34984 opococ 34985 opexmid 34997 opnoncon 34998 cmtidN 35047 ltrniotaidvalN 36373 pell14qrexpclnn0 37932 rmxdbl 38006 rmydbl 38007 rhmsubclem3 42598 rhmsubcALTVlem3 42616 |
Copyright terms: Public domain | W3C validator |