![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1087 by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1074 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3anan32 1083 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 267 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3anrot 1087 3simpbOLD 1145 an33rean 1587 elioore 12390 leexp2 13101 swrdswrd 13652 pcgcd 15776 ablsubsub23 18422 xmetrtri 22353 phtpcer 22987 ishl2 23358 rusgrprc 26688 clwwlknon2num 27245 ablo32 27704 ablodivdiv 27708 ablodiv32 27710 bnj268 31076 bnj945 31143 bnj944 31307 bnj969 31315 btwncom 32419 btwnswapid2 32423 btwnouttr 32429 cgr3permute1 32453 colinearperm1 32467 endofsegid 32490 colinbtwnle 32523 broutsideof2 32527 outsideofcom 32533 neificl 33854 lhpexle2 35791 uunTT1p1 39515 uun123 39529 smflimlem4 41480 alsi-no-surprise 43047 |
Copyright terms: Public domain | W3C validator |