![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi2d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 252 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi12d 1440 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: vtocl3gaf 3306 offval22 7298 ereq2 7795 wrdl3s3 13751 mhmlem 17582 isdrngrd 18821 lmodlema 18916 mdetunilem9 20474 neiptoptop 20983 neiptopnei 20984 hausnei 21180 regr1lem2 21591 ustuqtop4 22095 utopsnneiplem 22098 axtg5seg 25409 axtgupdim2 25415 axtgeucl 25416 brbtwn 25824 axlowdim 25886 axeuclidlem 25887 incistruhgr 26019 issubgr2 26209 wwlksnwwlksnon 26878 wwlksnwwlksnonOLD 26880 upgr4cycl4dv4e 27163 isnvlem 27593 csmdsymi 29321 br8d 29548 slmdlema 29884 carsgmon 30504 sitgclg 30532 tgoldbachgt 30869 axtgupdim2OLD 30874 bnj852 31117 bnj18eq1 31123 bnj938 31133 bnj983 31147 bnj1318 31219 bnj1326 31220 cvmlift3lem4 31430 cvmlift3 31436 br8 31772 br6 31773 br4 31774 brcolinear2 32290 colineardim1 32293 brfs 32311 fscgr 32312 btwnconn1lem7 32325 brsegle 32340 unblimceq0 32623 sdclem2 33668 sdclem1 33669 sdc 33670 fdc 33671 cdleme18d 35900 cdlemk35s 36542 cdlemk39s 36544 monotoddzz 37825 jm2.27 37892 mendlmod 38080 fiiuncl 39548 wessf1ornlem 39685 fmulcl 40131 fmuldfeqlem1 40132 fprodcncf 40432 dvmptfprodlem 40477 dvmptfprod 40478 dvnprodlem2 40480 stoweidlem6 40541 stoweidlem8 40543 stoweidlem31 40566 stoweidlem34 40569 stoweidlem43 40578 stoweidlem52 40587 fourierdlem41 40683 fourierdlem48 40689 fourierdlem49 40690 ovnsubaddlem1 41105 9gbo 41987 11gbo 41988 lmod1 42606 |
Copyright terms: Public domain | W3C validator |