![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi23d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi23d | ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 252 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
2 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1439 | 1 ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: f1dom3el3dif 6566 wrecseq123 7453 oeeui 7727 fpwwe2lem5 9494 pwfseqlem4a 9521 pwfseqlem4 9522 swrdccatin12lem3 13536 prodeq2w 14686 prodeq2ii 14687 divalg 15173 dfgcd2 15310 iscatd2 16389 posi 16997 issubg3 17659 pmtrfrn 17924 psgnunilem2 17961 psgnunilem3 17962 lmhmpropd 19121 lbsacsbs 19204 frlmphl 20168 neiptoptop 20983 neiptopnei 20984 cnhaus 21206 nrmsep 21209 dishaus 21234 ordthauslem 21235 nconnsubb 21274 pthaus 21489 txhaus 21498 xkohaus 21504 regr1lem 21590 isust 22054 ustuqtop4 22095 methaus 22372 metnrmlem3 22711 iscau4 23123 pmltpclem1 23263 dvfsumlem2 23835 aannenlem1 24128 aannenlem2 24129 istrkgcb 25400 hlbtwn 25551 iscgra 25746 dfcgra2 25766 f1otrge 25797 axlowdim 25886 axeuclidlem 25887 eengtrkg 25910 clwwlk 26951 clwlksfclwwlk 27049 upgr3v3e3cycl 27158 upgr4cycl4dv4e 27163 numclwwlk5 27375 ex-opab 27419 l2p 27461 vciOLD 27544 isvclem 27560 isnvlem 27593 dipass 27828 adj1 28920 adjeq 28922 cnlnssadj 29067 br8d 29548 carsgmon 30504 carsgsigalem 30505 carsgclctunlem2 30509 carsgclctun 30511 bnj1154 31193 br8 31772 br6 31773 br4 31774 frecseq123 31902 brsslt 32025 fvtransport 32264 brcgr3 32278 brfs 32311 fscgr 32312 btwnconn1lem11 32329 brsegle 32340 fvray 32373 linedegen 32375 fvline 32376 poimirlem28 33567 poimirlem32 33571 heiborlem2 33741 hlsuprexch 34985 3dim1lem5 35070 lplni2 35141 2llnjN 35171 lvoli2 35185 2lplnj 35224 cdleme18d 35900 cdlemg1cex 36193 ismrc 37581 monotoddzzfi 37824 oddcomabszz 37826 zindbi 37828 rmydioph 37898 fsumiunss 40125 sumnnodd 40180 stoweidlem31 40566 stoweidlem34 40569 stoweidlem43 40578 stoweidlem48 40583 fourierdlem42 40684 sge0iunmptlemre 40950 sge0iunmpt 40953 vonioo 41217 vonicc 41220 |
Copyright terms: Public domain | W3C validator |