![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi1d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | biidd 252 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
3 | 1, 2 | 3anbi12d 1440 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: vtocl3gaf 3306 axdc4uz 12823 wrdl3s3 13751 relexpindlem 13847 sqrtval 14021 sqreu 14144 coprmprod 15422 mreexexd 16355 mreexexdOLD 16356 iscatd2 16389 lmodprop2d 18973 neiptopnei 20984 hausnei 21180 isreg2 21229 regr1lem2 21591 ustval 22053 ustuqtop4 22095 axtgupdim2 25415 axtgeucl 25416 iscgra 25746 brbtwn 25824 ax5seg 25863 axlowdim 25886 axeuclidlem 25887 wlkonprop 26610 upgr2wlk 26620 upgrf1istrl 26656 elwspths2spth 26934 clwlkclwwlk 26968 clwwlknonel 27070 upgr4cycl4dv4e 27163 extwwlkfab 27342 nvi 27597 br8d 29548 xlt2addrd 29651 isslmd 29883 slmdlema 29884 tgoldbachgt 30869 axtgupdim2OLD 30874 br8 31772 br6 31773 br4 31774 fvtransport 32264 brcolinear2 32290 colineardim1 32293 fscgr 32312 idinside 32316 brsegle 32340 poimirlem28 33567 caures 33686 iscringd 33927 oposlem 34787 cdleme18d 35900 jm2.27 37892 9gbo 41987 11gbo 41988 |
Copyright terms: Public domain | W3C validator |