![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi12d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi12d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | biidd 252 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
4 | 1, 2, 3 | 3anbi123d 1548 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3anbi1d 1552 3anbi2d 1553 f1dom3el3dif 6690 fseq1m1p1 12628 dfrtrcl2 14021 imasdsval 16397 iscatd2 16563 ispos 17168 psgnunilem1 18133 ringpropd 18802 mdetunilem3 20642 mdetunilem9 20648 dvfsumlem2 24009 istrkge 25576 axtg5seg 25584 axtgeucl 25591 iscgrad 25923 axlowdim 26061 axeuclid 26063 eengtrkge 26086 umgrvad2edg 26325 upgr3v3e3cycl 27353 upgr4cycl4dv4e 27358 lt2addrd 29846 xlt2addrd 29853 sigaval 30503 issgon 30516 brafs 31080 etasslt 32247 brofs 32439 funtransport 32465 fvtransport 32466 brifs 32477 ifscgr 32478 brcgr3 32480 cgr3permute3 32481 brfs 32513 btwnconn1lem11 32531 funray 32574 fvray 32575 funline 32576 fvline 32578 lpolsetN 37291 rmydioph 38101 iunrelexpmin2 38524 |
Copyright terms: Public domain | W3C validator |