![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan32 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3anan32 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1073 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | an32 625 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
3 | 1, 2 | bitri 264 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1073 |
This theorem is referenced by: 3ancomb 1085 anandi3r 1092 rabssrabd 3838 dff1o3 6285 bropfvvvvlem 7411 tz7.49c 7698 ispos2 17156 lbsacsbs 19371 obslbs 20291 islbs4 20388 leordtvallem1 21235 trfbas2 21867 isclmp 23116 lssbn 23367 sineq0 24494 dchrelbas3 25184 nb3grpr2 26508 uspgr2wlkeq 26777 2spthd 27088 clwwlknonwwlknonb 27281 clwwlknonwwlknonbOLD 27282 frgr2wwlkeu 27509 elicoelioo 29880 cndprobprob 30840 bnj543 31301 elno3 32145 ellimits 32354 refsymrel2 34655 refsymrel3 34656 |
Copyright terms: Public domain | W3C validator |