![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1140 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 492 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3adant3r3 1176 3ad2antr1 1180 3ad2antr2 1181 sotr2 5168 dfwe2 7098 smogt 7584 wlogle 10674 fzadd2 12490 tanadd 15017 prdsmndd 17445 mhmmnd 17659 imasring 18740 prdslmodd 19092 mpllsslem 19558 scmatlss 20454 mdetunilem3 20543 ptclsg 21541 tmdgsum2 22022 isxmet2d 22254 xmetres2 22288 prdsxmetlem 22295 comet 22440 iimulcl 22858 icoopnst 22860 iocopnst 22861 icccvx 22871 dvfsumrlim 23914 dvfsumrlim2 23915 colhp 25782 eengtrkg 25985 wwlksnredwwlkn 26934 dmdsl3 29404 resconn 31456 poimirlem28 33669 poimirlem32 33673 broucube 33675 ftc1anclem7 33723 ftc1anc 33725 isdrngo2 33989 iscringd 34029 unichnidl 34062 lplnle 35246 2llnjN 35273 2lplnj 35326 osumcllem11N 35672 cdleme1 35934 erngplus2 36511 erngplus2-rN 36519 erngdvlem3 36697 erngdvlem3-rN 36705 dvaplusgv 36717 dvalveclem 36733 dvhvaddass 36805 dvhlveclem 36816 dihmeetlem12N 37026 issmflem 41359 fmtnoprmfac1 41904 lincresunit3lem2 42696 lincresunit3 42697 |
Copyright terms: Public domain | W3C validator |