![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantr2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3adantr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1145 | . 2 ⊢ ((𝜓 ∧ 𝜏 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 492 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: 3adant3r2 1199 po3nr 5201 funcnvqp 6113 sornom 9311 axdclem2 9554 fzadd2 12589 issubc3 16730 funcestrcsetclem9 17009 funcsetcestrclem9 17024 pgpfi 18240 imasring 18839 prdslmodd 19191 icoopnst 22959 iocopnst 22960 axcontlem4 26067 nvmdi 27833 mdsl3 29505 elicc3 32638 iscringd 34128 erngdvlem3 36798 erngdvlem3-rN 36806 dvalveclem 36834 dvhlveclem 36917 dvmptfprodlem 40680 smflimlem4 41506 funcringcsetcALTV2lem9 42572 funcringcsetclem9ALTV 42595 |
Copyright terms: Public domain | W3C validator |