MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantr2 Structured version   Visualization version   GIF version

Theorem 3adantr2 1176
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
3adantr2 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)

Proof of Theorem 3adantr2
StepHypRef Expression
1 3simpb 1145 . 2 ((𝜓𝜏𝜒) → (𝜓𝜒))
2 3adantr.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylan2 492 1 ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  3adant3r2  1199  po3nr  5201  funcnvqp  6113  sornom  9311  axdclem2  9554  fzadd2  12589  issubc3  16730  funcestrcsetclem9  17009  funcsetcestrclem9  17024  pgpfi  18240  imasring  18839  prdslmodd  19191  icoopnst  22959  iocopnst  22960  axcontlem4  26067  nvmdi  27833  mdsl3  29505  elicc3  32638  iscringd  34128  erngdvlem3  36798  erngdvlem3-rN  36806  dvalveclem  36834  dvhlveclem  36917  dvmptfprodlem  40680  smflimlem4  41506  funcringcsetcALTV2lem9  42572  funcringcsetclem9ALTV  42595
  Copyright terms: Public domain W3C validator