![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r3 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1114 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr3 1177 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: ressress 16140 plttr 17171 plelttr 17173 latledi 17290 latmlej11 17291 latmlej21 17293 latmlej22 17294 latjass 17296 latj12 17297 latj31 17300 ipopos 17361 latdisdlem 17390 imasmnd2 17528 imasmnd 17529 grpaddsubass 17706 grpsubsub4 17709 grpnpncan 17711 imasgrp2 17731 imasgrp 17732 frgp0 18373 cmn12 18413 abladdsub 18420 imasring 18819 dvrass 18890 lss1 19141 islmhm2 19240 psrgrp 19600 psrlmod 19603 zntoslem 20107 ipdir 20186 t1sep 21376 mettri2 22347 xmetrtri 22361 xmetrtri2 22362 pi1grplem 23049 dchrabl 25178 motgrp 25637 xmstrkgc 25965 ax5seglem4 26011 grpomuldivass 27704 ablomuldiv 27715 ablodivdiv4 27717 nvmdi 27812 dipdi 28007 dipsubdir 28012 dipsubdi 28013 cgr3tr4 32465 cgr3rflx 32467 seglemin 32526 linerflx1 32562 elicc3 32617 rngosubdi 34057 rngosubdir 34058 igenval2 34178 dmncan1 34188 latmassOLD 35019 omlfh1N 35048 omlfh3N 35049 cvrnbtwn 35061 cvrnbtwn2 35065 cvrnbtwn4 35069 hlatj12 35160 cvrntr 35214 islpln2a 35337 3atnelvolN 35375 elpadd2at2 35596 paddasslem17 35625 paddass 35627 paddssw2 35633 pmapjlln1 35644 ltrn2ateq 35970 cdlemc3 35983 cdleme1b 36016 cdleme3b 36019 cdleme3c 36020 cdleme9b 36042 erngdvlem3 36780 erngdvlem3-rN 36788 dvalveclem 36816 mendlmod 38265 lincsumscmcl 42732 |
Copyright terms: Public domain | W3C validator |