![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1114 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr2 1176 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: plttr 17192 latjlej2 17288 latmlem1 17303 latmlem2 17304 latledi 17311 latmlej11 17312 latmlej12 17313 ipopos 17382 grppnpcan2 17731 mulgsubdir 17804 imasring 18840 zntoslem 20128 mettri2 22368 mettri 22379 xmetrtri 22382 xmetrtri2 22383 metrtri 22384 ablomuldiv 27737 ablonnncan1 27743 nvmdi 27834 dipdi 28029 dipassr 28032 dipsubdir 28034 dipsubdi 28035 btwncomim 32448 cgr3tr4 32487 cgr3rflx 32489 colinbtwnle 32553 rngosubdi 34076 rngosubdir 34077 dmncan1 34207 dmncan2 34208 omlfh1N 35067 omlfh3N 35068 cvrnbtwn3 35085 cvrnbtwn4 35088 cvrcmp2 35093 hlatjrot 35181 cvrat3 35250 lplnribN 35359 ltrn2ateq 35989 dvalveclem 36835 mendlmod 38284 |
Copyright terms: Public domain | W3C validator |