![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1112 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3adantr1 1173 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: plttr 17177 pltletr 17178 latjlej1 17272 latjlej2 17273 latnlej 17275 latnlej2 17278 latmlem2 17289 latledi 17296 latjass 17302 latj32 17304 latj13 17305 ipopos 17367 tsrlemax 17427 imasmnd2 17534 grpsubsub 17711 grpnnncan2 17719 imasgrp2 17737 mulgnn0ass 17785 mulgsubdir 17789 cmn32 18417 ablsubadd 18423 imasring 18826 zntoslem 20119 xmettri3 22377 mettri3 22378 xmetrtri 22379 xmetrtri2 22380 metrtri 22381 cphdivcl 23200 cphassr 23230 relogbmulexp 24736 grpodivdiv 27728 grpomuldivass 27729 ablo32 27737 ablodivdiv4 27742 ablodiv32 27743 ablonnncan 27744 nvmdi 27837 dipdi 28032 dipassr 28035 dipsubdir 28037 dipsubdi 28038 dvrcan5 30127 cgr3tr4 32490 cgr3rflx 32492 endofsegid 32523 seglemin 32551 broutsideof2 32560 rngosubdi 34069 rngosubdir 34070 isdrngo2 34082 crngm23 34126 dmncan2 34201 latmassOLD 35031 latm32 35033 cvrnbtwn4 35081 cvrcmp2 35086 ltcvrntr 35225 atcvrj0 35229 3dim3 35270 paddasslem17 35637 paddass 35639 lautlt 35892 lautcvr 35893 lautj 35894 lautm 35895 erngdvlem3 36792 dvalveclem 36828 mendlmod 38282 |
Copyright terms: Public domain | W3C validator |