![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant1l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3expb 1285 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | adantll 750 | . 2 ⊢ (((𝜏 ∧ 𝜑) ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
4 | 3 | 3impb 1279 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: 3adant2l 1360 3adant3l 1362 cfsmolem 9130 axdc3lem4 9313 issubmnd 17365 maducoeval2 20494 cramerlem3 20543 restnlly 21333 efgh 24332 funvtxdm2valOLD 25940 funiedgdm2valOLD 25941 hasheuni 30275 matunitlindflem1 33535 pellex 37716 mendlmod 38080 disjf1o 39692 ssfiunibd 39837 mullimc 40166 mullimcf 40173 limclner 40201 limsupresxr 40316 liminfresxr 40317 sge0lefi 40933 isomenndlem 41065 hoicvr 41083 ovncvrrp 41099 |
Copyright terms: Public domain | W3C validator |