![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 755 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1177 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: simpr1 1234 simpr1l 1291 simpr1r 1293 simpr11 1333 simpr12 1335 simpr13 1337 ispod 5195 funcnvqp 6113 dfwe2 7146 poxp 7457 cfcoflem 9286 axdc3lem 9464 fzadd2 12569 fzosubel2 12722 hashdifpr 13395 sqr0lem 14180 iscatd2 16543 funcestrcsetclem9 16989 funcsetcestrclem9 17004 curf2cl 17072 yonedalem4c 17118 grpsubadd 17704 mulgnnass 17777 mulgnnassOLD 17778 mulgnn0ass 17779 dprdss 18628 dprd2da 18641 srgi 18711 lsssn0 19150 psrbaglesupp 19570 zntoslem 20107 blsscls 22513 iimulcl 22937 pi1grplem 23049 pi1xfrf 23053 dvconst 23879 logexprlim 25149 wwlksnextbi 27012 umgr3cyclex 27335 nvss 27757 disjdsct 29789 issgon 30495 measdivcstOLD 30596 measdivcst 30597 elmrsubrn 31724 poimirlem28 33750 ftc1anc 33806 fdc 33854 cvrnbtwn3 35066 paddasslem9 35617 paddasslem17 35625 pmapjlln1 35644 lautj 35882 lautm 35883 dfsalgen2 41062 smflimlem4 41488 pfxccat3a 41939 splvalpfx 41945 lidldomnnring 42440 funcringcsetcALTV2lem9 42554 funcringcsetclem9ALTV 42577 lincresunit3lem2 42779 |
Copyright terms: Public domain | W3C validator |