Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmlid Structured version   Visualization version   GIF version

Theorem 2zrngnmlid 42459
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmlid 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmlid
StepHypRef Expression
1 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
212even 42443 . . . 4 2 ∈ 𝐸
32a1i 11 . . 3 (𝑏𝐸 → 2 ∈ 𝐸)
4 oveq2 6821 . . . . 5 (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2))
5 id 22 . . . . 5 (𝑎 = 2 → 𝑎 = 2)
64, 5neeq12d 2993 . . . 4 (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
76adantl 473 . . 3 ((𝑏𝐸𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
8 elrabi 3499 . . . . . 6 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
98zcnd 11675 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ)
109, 1eleq2s 2857 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1111neven 42442 . . . . . . . 8 1 ∉ 𝐸
12 elnelne2 3046 . . . . . . . 8 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
1311, 12mpan2 709 . . . . . . 7 (𝑏𝐸𝑏 ≠ 1)
1413adantr 472 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ≠ 1)
15 simpr 479 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
16 2cnd 11285 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ∈ ℂ)
17 2ne0 11305 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ≠ 0)
1915, 16, 18divcan4d 10999 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏)
20 2cnne0 11434 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
21 divid 10906 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1)
2220, 21mp1i 13 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → (2 / 2) = 1)
2314, 19, 223netr4d 3009 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2))
2415, 16mulcld 10252 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ)
2520a1i 11 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0))
26 div11 10905 . . . . . . . 8 (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2724, 16, 25, 26syl3anc 1477 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2827biimprd 238 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2)))
2928necon3d 2953 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2))
3023, 29mpd 15 . . . 4 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2)
3110, 30mpdan 705 . . 3 (𝑏𝐸 → (𝑏 · 2) ≠ 2)
323, 7, 31rspcedvd 3456 . 2 (𝑏𝐸 → ∃𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎)
3332rgen 3060 1 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wnel 3035  wral 3050  wrex 3051  {crab 3054  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   · cmul 10133   / cdiv 10876  2c2 11262  cz 11569  s cress 16060  mulGrpcmgp 18689  fldccnfld 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570
This theorem is referenced by:  2zrngnring  42462
  Copyright terms: Public domain W3C validator