Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngALT Structured version   Visualization version   GIF version

Theorem 2zrngALT 42466
 Description: The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng 42453, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 42462) and a multiplicative semigroup (see 2zrngmsgrp 42465). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngALT 𝑅 ∈ Rng
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngALT
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
31, 22zrngaabl 42462 . 2 𝑅 ∈ Abel
4 2zrngmmgm.1 . . 3 𝑀 = (mulGrp‘𝑅)
51, 2, 42zrngmsgrp 42465 . 2 𝑀 ∈ SGrp
6 elrabi 3508 . . . . . 6 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ)
76zcnd 11684 . . . . 5 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ)
87, 1eleq2s 2867 . . . 4 (𝑎𝐸𝑎 ∈ ℂ)
9 elrabi 3508 . . . . . 6 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
109zcnd 11684 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ)
1110, 1eleq2s 2867 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
12 elrabi 3508 . . . . . 6 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1312zcnd 11684 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ)
1413, 1eleq2s 2867 . . . 4 (𝑦𝐸𝑦 ∈ ℂ)
15 adddi 10226 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)))
16 adddir 10232 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))
1715, 16jca 495 . . . 4 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))
188, 11, 14, 17syl3an 1162 . . 3 ((𝑎𝐸𝑏𝐸𝑦𝐸) → ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦))))
1918rgen3 3124 . 2 𝑎𝐸𝑏𝐸𝑦𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))
201, 22zrngbas 42454 . . 3 𝐸 = (Base‘𝑅)
211, 22zrngadd 42455 . . 3 + = (+g𝑅)
221, 22zrngmul 42463 . . 3 · = (.r𝑅)
2320, 4, 21, 22isrng 42394 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝑀 ∈ SGrp ∧ ∀𝑎𝐸𝑏𝐸𝑦𝐸 ((𝑎 · (𝑏 + 𝑦)) = ((𝑎 · 𝑏) + (𝑎 · 𝑦)) ∧ ((𝑎 + 𝑏) · 𝑦) = ((𝑎 · 𝑦) + (𝑏 · 𝑦)))))
243, 5, 19, 23mpbir3an 1425 1 𝑅 ∈ Rng
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061  {crab 3064  ‘cfv 6031  (class class class)co 6792  ℂcc 10135   + caddc 10140   · cmul 10142  2c2 11271  ℤcz 11578   ↾s cress 16064  SGrpcsgrp 17490  Abelcabl 18400  mulGrpcmgp 18696  ℂfldccnfld 19960  Rngcrng 42392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ring 18756  df-cring 18757  df-cnfld 19961  df-rng0 42393 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator