Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zlidl Structured version   Visualization version   GIF version

Theorem 2zlidl 42442
Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zlidl.u 𝑈 = (LIdeal‘ℤring)
Assertion
Ref Expression
2zlidl 𝐸𝑈
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑈(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zlidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 ssrab2 3826 . . 3 {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ
31, 2eqsstri 3774 . 2 𝐸 ⊆ ℤ
410even 42439 . . 3 0 ∈ 𝐸
54ne0ii 4064 . 2 𝐸 ≠ ∅
6 eqeq1 2762 . . . . . . . 8 (𝑧 = 𝑗 → (𝑧 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑥)))
76rexbidv 3188 . . . . . . 7 (𝑧 = 𝑗 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
87, 1elrab2 3505 . . . . . 6 (𝑗𝐸 ↔ (𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)))
9 eqeq1 2762 . . . . . . . 8 (𝑧 = 𝑘 → (𝑧 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑥)))
109rexbidv 3188 . . . . . . 7 (𝑧 = 𝑘 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
1110, 1elrab2 3505 . . . . . 6 (𝑘𝐸 ↔ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))
128, 11anbi12i 735 . . . . 5 ((𝑗𝐸𝑘𝐸) ↔ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))))
13 simpl 474 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑖 ∈ ℤ)
14 simprll 821 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑗 ∈ ℤ)
1513, 14zmulcld 11678 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → (𝑖 · 𝑗) ∈ ℤ)
16 simpl 474 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → 𝑘 ∈ ℤ)
1716adantl 473 . . . . . . . 8 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → 𝑘 ∈ ℤ)
1817adantl 473 . . . . . . 7 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → 𝑘 ∈ ℤ)
1915, 18zaddcld 11676 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ ℤ)
20 oveq2 6819 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (2 · 𝑥) = (2 · 𝑎))
2120eqeq2d 2768 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑗 = (2 · 𝑥) ↔ 𝑗 = (2 · 𝑎)))
2221cbvrexv 3309 . . . . . . . . . 10 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) ↔ ∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎))
23 oveq2 6819 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (2 · 𝑥) = (2 · 𝑏))
2423eqeq2d 2768 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝑘 = (2 · 𝑥) ↔ 𝑘 = (2 · 𝑏)))
2524cbvrexv 3309 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) ↔ ∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏))
26 simpr 479 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
27 simprll 821 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℤ)
2827adantr 472 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℤ)
2926, 28zmulcld 11678 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℤ)
30 simp-4l 825 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℤ)
3129, 30zaddcld 11676 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑎) + 𝑏) ∈ ℤ)
32 simpr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑗 = (2 · 𝑎))
3332ad2antrl 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑗 = (2 · 𝑎))
3433oveq2d 6827 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → (𝑖 · 𝑗) = (𝑖 · (2 · 𝑎)))
35 simpllr 817 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑘 = (2 · 𝑏))
3634, 35oveq12d 6829 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
3736adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · 𝑗) + 𝑘) = ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)))
38 oveq2 6819 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 · 𝑎) + 𝑏) → (2 · 𝑥) = (2 · ((𝑖 · 𝑎) + 𝑏)))
3937, 38eqeqan12d 2774 . . . . . . . . . . . . . . . . 17 ((((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) ∧ 𝑥 = ((𝑖 · 𝑎) + 𝑏)) → (((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥) ↔ ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏))))
40 zcn 11572 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
4140adantl 473 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
42 2cnd 11283 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
43 zcn 11572 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
4443adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → 𝑎 ∈ ℂ)
4544ad2antrl 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) → 𝑎 ∈ ℂ)
4645adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑎 ∈ ℂ)
4741, 42, 46mul12d 10435 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · (2 · 𝑎)) = (2 · (𝑖 · 𝑎)))
4847oveq1d 6826 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
4941, 46mulcld 10250 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑎) ∈ ℂ)
50 zcn 11572 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
5150ad4antr 771 . . . . . . . . . . . . . . . . . . 19 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → 𝑏 ∈ ℂ)
5242, 49, 51adddid 10254 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → (2 · ((𝑖 · 𝑎) + 𝑏)) = ((2 · (𝑖 · 𝑎)) + (2 · 𝑏)))
5348, 52eqtr4d 2795 . . . . . . . . . . . . . . . . 17 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ((𝑖 · (2 · 𝑎)) + (2 · 𝑏)) = (2 · ((𝑖 · 𝑎) + 𝑏)))
5431, 39, 53rspcedvd 3454 . . . . . . . . . . . . . . . 16 (((((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) ∧ 𝑘 ∈ ℤ) ∧ ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ)) ∧ 𝑖 ∈ ℤ) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
5554exp41 639 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑘 = (2 · 𝑏)) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5655rexlimiva 3164 . . . . . . . . . . . . . 14 (∃𝑏 ∈ ℤ 𝑘 = (2 · 𝑏) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5725, 56sylbi 207 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥) → (𝑘 ∈ ℤ → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
5857impcom 445 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) ∧ 𝑗 ∈ ℤ) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
5958expdcom 454 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑗 = (2 · 𝑎)) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6059rexlimiva 3164 . . . . . . . . . 10 (∃𝑎 ∈ ℤ 𝑗 = (2 · 𝑎) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6122, 60sylbi 207 . . . . . . . . 9 (∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥) → (𝑗 ∈ ℤ → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))))
6261impcom 445 . . . . . . . 8 ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) → ((𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))))
6362imp 444 . . . . . . 7 (((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥))) → (𝑖 ∈ ℤ → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6463impcom 445 . . . . . 6 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥))
65 eqeq1 2762 . . . . . . . 8 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (𝑧 = (2 · 𝑥) ↔ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6665rexbidv 3188 . . . . . . 7 (𝑧 = ((𝑖 · 𝑗) + 𝑘) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6766, 1elrab2 3505 . . . . . 6 (((𝑖 · 𝑗) + 𝑘) ∈ 𝐸 ↔ (((𝑖 · 𝑗) + 𝑘) ∈ ℤ ∧ ∃𝑥 ∈ ℤ ((𝑖 · 𝑗) + 𝑘) = (2 · 𝑥)))
6819, 64, 67sylanbrc 701 . . . . 5 ((𝑖 ∈ ℤ ∧ ((𝑗 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑗 = (2 · 𝑥)) ∧ (𝑘 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑘 = (2 · 𝑥)))) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
6912, 68sylan2b 493 . . . 4 ((𝑖 ∈ ℤ ∧ (𝑗𝐸𝑘𝐸)) → ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7069ralrimivva 3107 . . 3 (𝑖 ∈ ℤ → ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸)
7170rgen 3058 . 2 𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸
72 2zlidl.u . . 3 𝑈 = (LIdeal‘ℤring)
73 zringbas 20024 . . 3 ℤ = (Base‘ℤring)
74 zringplusg 20025 . . 3 + = (+g‘ℤring)
75 zringmulr 20027 . . 3 · = (.r‘ℤring)
7672, 73, 74, 75islidl 19411 . 2 (𝐸𝑈 ↔ (𝐸 ⊆ ℤ ∧ 𝐸 ≠ ∅ ∧ ∀𝑖 ∈ ℤ ∀𝑗𝐸𝑘𝐸 ((𝑖 · 𝑗) + 𝑘) ∈ 𝐸))
773, 5, 71, 76mpbir3an 1427 1 𝐸𝑈
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  {crab 3052  wss 3713  c0 4056  cfv 6047  (class class class)co 6811  cc 10124  0cc0 10126   + caddc 10129   · cmul 10131  2c2 11260  cz 11567  LIdealclidl 19370  ringzring 20018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-addf 10205  ax-mulf 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-starv 16156  df-sca 16157  df-vsca 16158  df-ip 16159  df-tset 16160  df-ple 16161  df-ds 16164  df-unif 16165  df-lss 19133  df-sra 19372  df-rgmod 19373  df-lidl 19374  df-cnfld 19947  df-zring 20019
This theorem is referenced by:  2zrng  42443
  Copyright terms: Public domain W3C validator