MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlklem Structured version   Visualization version   GIF version

Theorem 2wlklem 26795
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Distinct variable groups:   𝑘,𝐸   𝑘,𝐹   𝑃,𝑘

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 10247 . 2 0 ∈ V
2 1ex 10248 . 2 1 ∈ V
3 fveq2 6354 . . . 4 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
43fveq2d 6358 . . 3 (𝑘 = 0 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘0)))
5 fveq2 6354 . . . 4 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
6 oveq1 6822 . . . . . 6 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
7 0p1e1 11345 . . . . . 6 (0 + 1) = 1
86, 7syl6eq 2811 . . . . 5 (𝑘 = 0 → (𝑘 + 1) = 1)
98fveq2d 6358 . . . 4 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
105, 9preq12d 4421 . . 3 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
114, 10eqeq12d 2776 . 2 (𝑘 = 0 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}))
12 fveq2 6354 . . . 4 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
1312fveq2d 6358 . . 3 (𝑘 = 1 → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘1)))
14 fveq2 6354 . . . 4 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
15 oveq1 6822 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
16 1p1e2 11347 . . . . . 6 (1 + 1) = 2
1715, 16syl6eq 2811 . . . . 5 (𝑘 = 1 → (𝑘 + 1) = 2)
1817fveq2d 6358 . . . 4 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
1914, 18preq12d 4421 . . 3 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
2013, 19eqeq12d 2776 . 2 (𝑘 = 1 → ((𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
211, 2, 11, 20ralpr 4383 1 (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wral 3051  {cpr 4324  cfv 6050  (class class class)co 6815  0cc0 10149  1c1 10150   + caddc 10152  2c2 11283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-ltxr 10292  df-2 11292
This theorem is referenced by:  upgr2wlk  26796  usgr2wlkneq  26884  usgr2trlncl  26888  usgr2pthlem  26891  usgr2pth  26892  uspgrn2crct  26933  wlk2v2elem2  27330
  Copyright terms: Public domain W3C validator