![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlklem | Structured version Visualization version GIF version |
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
Ref | Expression |
---|---|
2wlklem | ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10247 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 10248 | . 2 ⊢ 1 ∈ V | |
3 | fveq2 6354 | . . . 4 ⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) | |
4 | 3 | fveq2d 6358 | . . 3 ⊢ (𝑘 = 0 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘0))) |
5 | fveq2 6354 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
6 | oveq1 6822 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | |
7 | 0p1e1 11345 | . . . . . 6 ⊢ (0 + 1) = 1 | |
8 | 6, 7 | syl6eq 2811 | . . . . 5 ⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
9 | 8 | fveq2d 6358 | . . . 4 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
10 | 5, 9 | preq12d 4421 | . . 3 ⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
11 | 4, 10 | eqeq12d 2776 | . 2 ⊢ (𝑘 = 0 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)})) |
12 | fveq2 6354 | . . . 4 ⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) | |
13 | 12 | fveq2d 6358 | . . 3 ⊢ (𝑘 = 1 → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘1))) |
14 | fveq2 6354 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
15 | oveq1 6822 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
16 | 1p1e2 11347 | . . . . . 6 ⊢ (1 + 1) = 2 | |
17 | 15, 16 | syl6eq 2811 | . . . . 5 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
18 | 17 | fveq2d 6358 | . . . 4 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
19 | 14, 18 | preq12d 4421 | . . 3 ⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
20 | 13, 19 | eqeq12d 2776 | . 2 ⊢ (𝑘 = 1 → ((𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
21 | 1, 2, 11, 20 | ralpr 4383 | 1 ⊢ (∀𝑘 ∈ {0, 1} (𝐸‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∀wral 3051 {cpr 4324 ‘cfv 6050 (class class class)co 6815 0cc0 10149 1c1 10150 + caddc 10152 2c2 11283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 df-2 11292 |
This theorem is referenced by: upgr2wlk 26796 usgr2wlkneq 26884 usgr2trlncl 26888 usgr2pthlem 26891 usgr2pth 26892 uspgrn2crct 26933 wlk2v2elem2 27330 |
Copyright terms: Public domain | W3C validator |