MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkd Structured version   Visualization version   GIF version

Theorem 2wlkd 27078
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.) (Revised by AV, 23-Jan-2021.) (Proof shortened by AV, 14-Feb-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2wlkd.v 𝑉 = (Vtx‘𝐺)
2wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
2wlkd (𝜑𝐹(Walks‘𝐺)𝑃)

Proof of Theorem 2wlkd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 s3cli 13847 . . . 4 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
31, 2eqeltri 2836 . . 3 𝑃 ∈ Word V
43a1i 11 . 2 (𝜑𝑃 ∈ Word V)
5 2wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾”⟩
6 s2cli 13846 . . . 4 ⟨“𝐽𝐾”⟩ ∈ Word V
75, 6eqeltri 2836 . . 3 𝐹 ∈ Word V
87a1i 11 . 2 (𝜑𝐹 ∈ Word V)
91, 52wlkdlem1 27067 . . 3 (♯‘𝑃) = ((♯‘𝐹) + 1)
109a1i 11 . 2 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
11 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
12 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
13 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
141, 5, 11, 12, 132wlkdlem10 27077 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
151, 5, 11, 122wlkdlem5 27071 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
16 2wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
17161vgrex 26103 . . . 4 (𝐴𝑉𝐺 ∈ V)
18173ad2ant1 1128 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐺 ∈ V)
1911, 18syl 17 . 2 (𝜑𝐺 ∈ V)
20 2wlkd.i . 2 𝐼 = (iEdg‘𝐺)
211, 5, 112wlkdlem4 27070 . 2 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
224, 8, 10, 14, 15, 19, 16, 20, 21wlkd 26815 1 (𝜑𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  Vcvv 3341  wss 3716  {cpr 4324   class class class wbr 4805  cfv 6050  (class class class)co 6815  1c1 10150   + caddc 10152  chash 13332  Word cword 13498  ⟨“cs2 13807  ⟨“cs3 13808  Vtxcvtx 26095  iEdgciedg 26096  Walkscwlks 26724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13814  df-s3 13815  df-wlks 26727
This theorem is referenced by:  2wlkond  27079  2trld  27080  umgr2adedgwlk  27087
  Copyright terms: Public domain W3C validator