![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2trlond | Structured version Visualization version GIF version |
Description: A trail of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
2trld.n | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
Ref | Expression |
---|---|
2trlond | ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkond 27084 | . 2 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
9 | 2trld.n | . . 3 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 9 | 2trld 27085 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
11 | 3 | simp1d 1136 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
12 | 3 | simp3d 1138 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
13 | s2cli 13834 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
14 | 2, 13 | eqeltri 2846 | . . . 4 ⊢ 𝐹 ∈ Word V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Word V) |
16 | s3cli 13835 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
17 | 1, 16 | eqeltri 2846 | . . . 4 ⊢ 𝑃 ∈ Word V |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) |
19 | 6 | istrlson 26838 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
20 | 11, 12, 15, 18, 19 | syl22anc 1477 | . 2 ⊢ (𝜑 → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
21 | 8, 10, 20 | mpbir2and 692 | 1 ⊢ (𝜑 → 𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ⊆ wss 3723 {cpr 4318 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Word cword 13487 〈“cs2 13795 〈“cs3 13796 Vtxcvtx 26095 iEdgciedg 26096 WalksOncwlkson 26728 Trailsctrls 26822 TrailsOnctrlson 26823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-s2 13802 df-s3 13803 df-wlks 26730 df-wlkson 26731 df-trls 26824 df-trlson 26825 |
This theorem is referenced by: 2pthond 27089 |
Copyright terms: Public domain | W3C validator |