MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2trlond Structured version   Visualization version   GIF version

Theorem 2trlond 27086
Description: A trail of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2wlkd.v 𝑉 = (Vtx‘𝐺)
2wlkd.i 𝐼 = (iEdg‘𝐺)
2trld.n (𝜑𝐽𝐾)
Assertion
Ref Expression
2trlond (𝜑𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃)

Proof of Theorem 2trlond
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
6 2wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
7 2wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
81, 2, 3, 4, 5, 6, 72wlkond 27084 . 2 (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
9 2trld.n . . 3 (𝜑𝐽𝐾)
101, 2, 3, 4, 5, 6, 7, 92trld 27085 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
113simp1d 1136 . . 3 (𝜑𝐴𝑉)
123simp3d 1138 . . 3 (𝜑𝐶𝑉)
13 s2cli 13834 . . . . 5 ⟨“𝐽𝐾”⟩ ∈ Word V
142, 13eqeltri 2846 . . . 4 𝐹 ∈ Word V
1514a1i 11 . . 3 (𝜑𝐹 ∈ Word V)
16 s3cli 13835 . . . . 5 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
171, 16eqeltri 2846 . . . 4 𝑃 ∈ Word V
1817a1i 11 . . 3 (𝜑𝑃 ∈ Word V)
196istrlson 26838 . . 3 (((𝐴𝑉𝐶𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃𝐹(Trails‘𝐺)𝑃)))
2011, 12, 15, 18, 19syl22anc 1477 . 2 (𝜑 → (𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃𝐹(Trails‘𝐺)𝑃)))
218, 10, 20mpbir2and 692 1 (𝜑𝐹(𝐴(TrailsOn‘𝐺)𝐶)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  wss 3723  {cpr 4318   class class class wbr 4786  cfv 6031  (class class class)co 6793  Word cword 13487  ⟨“cs2 13795  ⟨“cs3 13796  Vtxcvtx 26095  iEdgciedg 26096  WalksOncwlkson 26728  Trailsctrls 26822  TrailsOnctrlson 26823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802  df-s3 13803  df-wlks 26730  df-wlkson 26731  df-trls 26824  df-trlson 26825
This theorem is referenced by:  2pthond  27089
  Copyright terms: Public domain W3C validator