![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2timesi | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2timesi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 11346 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 + caddc 10140 · cmul 10142 2c2 11271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-mulcl 10199 ax-mulcom 10201 ax-mulass 10203 ax-distr 10204 ax-1rid 10207 ax-cnre 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-2 11280 |
This theorem is referenced by: 2t2e4 11378 nn0le2xi 11548 binom2i 13180 rddif 14287 abs3lemi 14356 iseraltlem2 14620 prmreclem6 15831 mod2xi 15979 numexp2x 15989 prmlem2 16033 iihalf2 22951 pcoass 23042 ovolunlem1a 23483 tangtx 24477 sinq34lt0t 24481 eff1o 24515 ang180lem2 24760 dvatan 24882 basellem2 25028 basellem5 25031 chtub 25157 bposlem9 25237 ex-dvds 27649 norm3lem 28340 normpari 28345 polid2i 28348 ballotth 30933 heiborlem6 33940 rmspecsqrtnqOLD 37990 dirkertrigeqlem1 40826 fourierdlem94 40928 fourierdlem102 40936 fourierdlem111 40945 fourierdlem112 40946 fourierdlem113 40947 fourierdlem114 40948 sqwvfoura 40956 sqwvfourb 40957 fouriersw 40959 fmtnorec3 41978 2t6m3t4e0 42644 zlmodzxzequa 42803 |
Copyright terms: Public domain | W3C validator |