![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2times | Structured version Visualization version GIF version |
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
2times | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11281 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 6803 | . 2 ⊢ (2 · 𝐴) = ((1 + 1) · 𝐴) |
3 | 1p1times 10409 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | |
4 | 2, 3 | syl5eq 2817 | 1 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 (class class class)co 6793 ℂcc 10136 1c1 10139 + caddc 10141 · cmul 10143 2c2 11272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-mulcl 10200 ax-mulcom 10202 ax-mulass 10204 ax-distr 10205 ax-1rid 10208 ax-cnre 10211 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-2 11281 |
This theorem is referenced by: times2 11348 2timesi 11349 2txmxeqx 11351 2halves 11462 halfaddsub 11467 avglt2 11473 2timesd 11477 expubnd 13128 subsq2 13180 absmax 14277 sinmul 15108 sin2t 15113 cos2t 15114 sadadd2lem2 15380 pythagtriplem4 15731 pythagtriplem14 15740 pythagtriplem16 15742 cncph 28014 pellexlem2 37920 acongrep 38073 sub2times 40003 2timesgt 40018 |
Copyright terms: Public domain | W3C validator |