![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2th | Structured version Visualization version GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ 𝜑 |
2th.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
2th | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2th.1 | . . 3 ⊢ 𝜑 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 199 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: 2false 364 trujust 1632 dftru2 1638 bitru 1643 vjust 3339 dfnul2 4058 dfnul3 4059 rab0OLD 4097 pwv 4583 int0 4640 int0OLD 4641 0iin 4728 snnexOLD 7130 orduninsuc 7206 fo1st 7351 fo2nd 7352 1st2val 7359 2nd2val 7360 eqer 7944 ener 8166 ruv 8670 acncc 9452 grothac 9842 grothtsk 9847 hashneq0 13345 rexfiuz 14284 foo3 29609 signswch 30945 dfpo2 31950 domep 32001 fobigcup 32311 elhf2 32586 limsucncmpi 32748 bj-vjust 33090 bj-df-v 33320 uunT1 39507 nabctnabc 41602 clifte 41606 cliftet 41607 clifteta 41608 cliftetb 41609 confun5 41614 pldofph 41616 lco0 42724 |
Copyright terms: Public domain | W3C validator |