![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2t0e0 | Structured version Visualization version GIF version |
Description: 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2t0e0 | ⊢ (2 · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11304 | . 2 ⊢ 2 ∈ ℂ | |
2 | 1 | mul01i 10439 | 1 ⊢ (2 · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6815 0cc0 10149 · cmul 10154 2c2 11283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 df-2 11292 |
This theorem is referenced by: expmulnbnd 13211 iseraltlem2 14633 fsumcube 15011 1259lem5 16065 htpycc 23001 pco0 23035 pcohtpylem 23040 pcopt2 23044 pcoass 23045 pcorevlem 23047 pilem2 24426 cospi 24445 sin2pi 24448 pythag 24768 bclbnd 25226 bposlem1 25230 bposlem2 25231 lgsquadlem1 25326 lgsquadlem2 25327 log2sumbnd 25454 pntrlog2bndlem4 25490 finsumvtxdg2size 26678 cdj3lem1 29624 dirkertrigeqlem3 40839 fourierdlem62 40907 1odd 42340 |
Copyright terms: Public domain | W3C validator |