MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem8a Structured version   Visualization version   GIF version

Theorem 2sqlem8a 25371
Description: Lemma for 2sqlem8 25372. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem8.n (𝜑𝑁 ∈ ℕ)
2sqlem8.m (𝜑𝑀 ∈ (ℤ‘2))
2sqlem8.1 (𝜑𝐴 ∈ ℤ)
2sqlem8.2 (𝜑𝐵 ∈ ℤ)
2sqlem8.3 (𝜑 → (𝐴 gcd 𝐵) = 1)
2sqlem8.4 (𝜑𝑁 = ((𝐴↑2) + (𝐵↑2)))
2sqlem8.c 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
2sqlem8.d 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
2sqlem8a (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑥,𝑦,𝑧   𝑥,𝐶   𝜑,𝑥,𝑦   𝐵,𝑎,𝑏,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝐷   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝐴(𝑤,𝑏)   𝐵(𝑧,𝑤)   𝐶(𝑦,𝑧,𝑤,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem8a
StepHypRef Expression
1 2sqlem8.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 2sqlem8.m . . . . . 6 (𝜑𝑀 ∈ (ℤ‘2))
3 eluz2b3 11965 . . . . . 6 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
42, 3sylib 208 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
54simpld 482 . . . 4 (𝜑𝑀 ∈ ℕ)
6 2sqlem8.c . . . 4 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
71, 5, 64sqlem5 15853 . . 3 (𝜑 → (𝐶 ∈ ℤ ∧ ((𝐴𝐶) / 𝑀) ∈ ℤ))
87simpld 482 . 2 (𝜑𝐶 ∈ ℤ)
9 2sqlem8.2 . . . 4 (𝜑𝐵 ∈ ℤ)
10 2sqlem8.d . . . 4 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 5, 104sqlem5 15853 . . 3 (𝜑 → (𝐷 ∈ ℤ ∧ ((𝐵𝐷) / 𝑀) ∈ ℤ))
1211simpld 482 . 2 (𝜑𝐷 ∈ ℤ)
134simprd 483 . . . 4 (𝜑𝑀 ≠ 1)
14 simpr 471 . . . . . . . . . 10 ((𝜑 ∧ (𝐶↑2) = 0) → (𝐶↑2) = 0)
151, 5, 6, 144sqlem9 15857 . . . . . . . . 9 ((𝜑 ∧ (𝐶↑2) = 0) → (𝑀↑2) ∥ (𝐴↑2))
1615ex 397 . . . . . . . 8 (𝜑 → ((𝐶↑2) = 0 → (𝑀↑2) ∥ (𝐴↑2)))
17 eluzelz 11898 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℤ)
182, 17syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
19 dvdssq 15488 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2018, 1, 19syl2anc 573 . . . . . . . 8 (𝜑 → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2116, 20sylibrd 249 . . . . . . 7 (𝜑 → ((𝐶↑2) = 0 → 𝑀𝐴))
22 simpr 471 . . . . . . . . . 10 ((𝜑 ∧ (𝐷↑2) = 0) → (𝐷↑2) = 0)
239, 5, 10, 224sqlem9 15857 . . . . . . . . 9 ((𝜑 ∧ (𝐷↑2) = 0) → (𝑀↑2) ∥ (𝐵↑2))
2423ex 397 . . . . . . . 8 (𝜑 → ((𝐷↑2) = 0 → (𝑀↑2) ∥ (𝐵↑2)))
25 dvdssq 15488 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2618, 9, 25syl2anc 573 . . . . . . . 8 (𝜑 → (𝑀𝐵 ↔ (𝑀↑2) ∥ (𝐵↑2)))
2724, 26sylibrd 249 . . . . . . 7 (𝜑 → ((𝐷↑2) = 0 → 𝑀𝐵))
28 2sqlem8.3 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) = 1)
29 ax-1ne0 10207 . . . . . . . . . . . 12 1 ≠ 0
3029a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ≠ 0)
3128, 30eqnetrd 3010 . . . . . . . . . 10 (𝜑 → (𝐴 gcd 𝐵) ≠ 0)
3231neneqd 2948 . . . . . . . . 9 (𝜑 → ¬ (𝐴 gcd 𝐵) = 0)
33 gcdeq0 15446 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
341, 9, 33syl2anc 573 . . . . . . . . 9 (𝜑 → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3532, 34mtbid 313 . . . . . . . 8 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 dvdslegcd 15434 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3718, 1, 9, 35, 36syl31anc 1479 . . . . . . 7 (𝜑 → ((𝑀𝐴𝑀𝐵) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3821, 27, 37syl2and 595 . . . . . 6 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 ≤ (𝐴 gcd 𝐵)))
3928breq2d 4798 . . . . . . 7 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 ≤ 1))
40 nnle1eq1 11250 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ≤ 1 ↔ 𝑀 = 1))
415, 40syl 17 . . . . . . 7 (𝜑 → (𝑀 ≤ 1 ↔ 𝑀 = 1))
4239, 41bitrd 268 . . . . . 6 (𝜑 → (𝑀 ≤ (𝐴 gcd 𝐵) ↔ 𝑀 = 1))
4338, 42sylibd 229 . . . . 5 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) → 𝑀 = 1))
4443necon3ad 2956 . . . 4 (𝜑 → (𝑀 ≠ 1 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0)))
4513, 44mpd 15 . . 3 (𝜑 → ¬ ((𝐶↑2) = 0 ∧ (𝐷↑2) = 0))
468zcnd 11685 . . . . 5 (𝜑𝐶 ∈ ℂ)
47 sqeq0 13134 . . . . 5 (𝐶 ∈ ℂ → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4846, 47syl 17 . . . 4 (𝜑 → ((𝐶↑2) = 0 ↔ 𝐶 = 0))
4912zcnd 11685 . . . . 5 (𝜑𝐷 ∈ ℂ)
50 sqeq0 13134 . . . . 5 (𝐷 ∈ ℂ → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5149, 50syl 17 . . . 4 (𝜑 → ((𝐷↑2) = 0 ↔ 𝐷 = 0))
5248, 51anbi12d 616 . . 3 (𝜑 → (((𝐶↑2) = 0 ∧ (𝐷↑2) = 0) ↔ (𝐶 = 0 ∧ 𝐷 = 0)))
5345, 52mtbid 313 . 2 (𝜑 → ¬ (𝐶 = 0 ∧ 𝐷 = 0))
54 gcdn0cl 15432 . 2 (((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ ¬ (𝐶 = 0 ∧ 𝐷 = 0)) → (𝐶 gcd 𝐷) ∈ ℕ)
558, 12, 53, 54syl21anc 1475 1 (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  {cab 2757  wne 2943  wral 3061  wrex 3062   class class class wbr 4786  cmpt 4863  ran crn 5250  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141  cle 10277  cmin 10468   / cdiv 10886  cn 11222  2c2 11272  cz 11579  cuz 11888  ...cfz 12533   mod cmo 12876  cexp 13067  abscabs 14182  cdvds 15189   gcd cgcd 15424  ℤ[i]cgz 15840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425
This theorem is referenced by:  2sqlem8  25372
  Copyright terms: Public domain W3C validator