MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem2 Structured version   Visualization version   GIF version

Theorem 2sqlem2 25188
Description: Lemma for 2sq 25200. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypothesis
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
Assertion
Ref Expression
2sqlem2 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
212sqlem1 25187 . . 3 (𝐴𝑆 ↔ ∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2))
3 elgz 15682 . . . . . . 7 (𝑧 ∈ ℤ[i] ↔ (𝑧 ∈ ℂ ∧ (ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ))
43simp2bi 1097 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℜ‘𝑧) ∈ ℤ)
53simp3bi 1098 . . . . . 6 (𝑧 ∈ ℤ[i] → (ℑ‘𝑧) ∈ ℤ)
6 gzcn 15683 . . . . . . 7 (𝑧 ∈ ℤ[i] → 𝑧 ∈ ℂ)
76absvalsq2d 14226 . . . . . 6 (𝑧 ∈ ℤ[i] → ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
8 oveq1 6697 . . . . . . . . 9 (𝑥 = (ℜ‘𝑧) → (𝑥↑2) = ((ℜ‘𝑧)↑2))
98oveq1d 6705 . . . . . . . 8 (𝑥 = (ℜ‘𝑧) → ((𝑥↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + (𝑦↑2)))
109eqeq2d 2661 . . . . . . 7 (𝑥 = (ℜ‘𝑧) → (((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2))))
11 oveq1 6697 . . . . . . . . 9 (𝑦 = (ℑ‘𝑧) → (𝑦↑2) = ((ℑ‘𝑧)↑2))
1211oveq2d 6706 . . . . . . . 8 (𝑦 = (ℑ‘𝑧) → (((ℜ‘𝑧)↑2) + (𝑦↑2)) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2)))
1312eqeq2d 2661 . . . . . . 7 (𝑦 = (ℑ‘𝑧) → (((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))))
1410, 13rspc2ev 3355 . . . . . 6 (((ℜ‘𝑧) ∈ ℤ ∧ (ℑ‘𝑧) ∈ ℤ ∧ ((abs‘𝑧)↑2) = (((ℜ‘𝑧)↑2) + ((ℑ‘𝑧)↑2))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
154, 5, 7, 14syl3anc 1366 . . . . 5 (𝑧 ∈ ℤ[i] → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2)))
16 eqeq1 2655 . . . . . 6 (𝐴 = ((abs‘𝑧)↑2) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
17162rexbidv 3086 . . . . 5 (𝐴 = ((abs‘𝑧)↑2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((abs‘𝑧)↑2) = ((𝑥↑2) + (𝑦↑2))))
1815, 17syl5ibrcom 237 . . . 4 (𝑧 ∈ ℤ[i] → (𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))))
1918rexlimiv 3056 . . 3 (∃𝑧 ∈ ℤ[i] 𝐴 = ((abs‘𝑧)↑2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
202, 19sylbi 207 . 2 (𝐴𝑆 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
21 gzreim 15690 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℤ[i])
22 zcn 11420 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
23 ax-icn 10033 . . . . . . . . . 10 i ∈ ℂ
24 zcn 11420 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
25 mulcl 10058 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
2623, 24, 25sylancr 696 . . . . . . . . 9 (𝑦 ∈ ℤ → (i · 𝑦) ∈ ℂ)
27 addcl 10056 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2822, 26, 27syl2an 493 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
2928absvalsq2d 14226 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘(𝑥 + (i · 𝑦)))↑2) = (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)))
30 zre 11419 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
31 zre 11419 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
32 crre 13898 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3330, 31, 32syl2an 493 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥)
3433oveq1d 6705 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℜ‘(𝑥 + (i · 𝑦)))↑2) = (𝑥↑2))
35 crim 13899 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3630, 31, 35syl2an 493 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦)
3736oveq1d 6705 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℑ‘(𝑥 + (i · 𝑦)))↑2) = (𝑦↑2))
3834, 37oveq12d 6708 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℜ‘(𝑥 + (i · 𝑦)))↑2) + ((ℑ‘(𝑥 + (i · 𝑦)))↑2)) = ((𝑥↑2) + (𝑦↑2)))
3929, 38eqtr2d 2686 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
40 fveq2 6229 . . . . . . . . 9 (𝑧 = (𝑥 + (i · 𝑦)) → (abs‘𝑧) = (abs‘(𝑥 + (i · 𝑦))))
4140oveq1d 6705 . . . . . . . 8 (𝑧 = (𝑥 + (i · 𝑦)) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 + (i · 𝑦)))↑2))
4241eqeq2d 2661 . . . . . . 7 (𝑧 = (𝑥 + (i · 𝑦)) → (((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2) ↔ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)))
4342rspcev 3340 . . . . . 6 (((𝑥 + (i · 𝑦)) ∈ ℤ[i] ∧ ((𝑥↑2) + (𝑦↑2)) = ((abs‘(𝑥 + (i · 𝑦)))↑2)) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4421, 39, 43syl2anc 694 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4512sqlem1 25187 . . . . 5 (((𝑥↑2) + (𝑦↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] ((𝑥↑2) + (𝑦↑2)) = ((abs‘𝑧)↑2))
4644, 45sylibr 224 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆)
47 eleq1 2718 . . . 4 (𝐴 = ((𝑥↑2) + (𝑦↑2)) → (𝐴𝑆 ↔ ((𝑥↑2) + (𝑦↑2)) ∈ 𝑆))
4846, 47syl5ibrcom 237 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆))
4948rexlimivv 3065 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)) → 𝐴𝑆)
5020, 49impbii 199 1 (𝐴𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  ici 9976   + caddc 9977   · cmul 9979  2c2 11108  cz 11415  cexp 12900  cre 13881  cim 13882  abscabs 14018  ℤ[i]cgz 15680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-gz 15681
This theorem is referenced by:  2sqlem5  25192  2sqlem7  25194  2sq  25200
  Copyright terms: Public domain W3C validator