MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 25201
Description: The converse to 2sq 25200. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 474 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 15465 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 15436 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 11445 . . . . 5 1 ∈ ℤ
8 dvdsnegb 15046 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 695 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 313 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 474 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 11526 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 12974 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 15050 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 694 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 478 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 11526 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 12974 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 11458 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 11521 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 12974 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 11523 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 11521 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 10276 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 11521 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 11521 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 10470 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 12974 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 11521 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 12974 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 11521 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 11521 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 10103 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 6705 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 11521 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 11521 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 13060 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 11521 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 13060 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 6708 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2696 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2689 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 4713 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 15050 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 694 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 11526 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 15046 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 694 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 222 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 11521 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 10378 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 696 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6519zred 11520 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ ℝ)
66 absresq 14086 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6865resqcld 13075 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ∈ ℝ)
69 prmnn 15435 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
702, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℕ)
7170nnred 11073 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℝ)
7271resqcld 13075 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑2) ∈ ℝ)
73 zsqcl2 12981 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7412, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋↑2) ∈ ℕ0)
75 nn0addge2 11378 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7668, 74, 75syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7776, 44breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ 𝑃)
786zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ ℂ)
7978exp1d 13043 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃↑1) = 𝑃)
807a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℤ)
81 2z 11447 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℤ
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 2 ∈ ℤ)
83 prmuz2 15455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
842, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ (ℤ‘2))
85 eluz2b2 11799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
8685simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8784, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑃)
88 1lt2 11232 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 2)
90 ltexp2a 12952 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9171, 80, 82, 87, 89, 90syl32anc 1374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃↑1) < (𝑃↑2))
9279, 91eqbrtrrd 4709 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 < (𝑃↑2))
9368, 71, 72, 77, 92lelttrd 10233 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) < (𝑃↑2))
9467, 93eqbrtrd 4707 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 14219 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 14227 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ (abs‘𝑌))
9770nnnn0d 11389 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 11392 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ 𝑃)
9995, 71, 96, 98lt2sqd 13083 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 247 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 11520 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 10222 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 15461 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 14074 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 12996 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addid1d 10274 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 229 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 189 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 14096 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 11332 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 208 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 391 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 140 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 15079 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 694 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 189 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 15048 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 314 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃𝑌)
129 coprm 15470 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 694 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2687 . . . . . . . . . . . . . 14 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
134133oveq1d 6705 . . . . . . . . . . . . 13 (𝜑 → (1 − (𝑌 · 𝐵)) = (((𝑃 · 𝐴) + (𝑌 · 𝐵)) − (𝑌 · 𝐵)))
13558zcnd 11521 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
136135, 62pncand 10431 . . . . . . . . . . . . 13 (𝜑 → (((𝑃 · 𝐴) + (𝑌 · 𝐵)) − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
137134, 136eqtrd 2685 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
138137negeqd 10313 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13964, 138eqtr3d 2687 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
14061, 139breqtrrd 4713 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
14120peano2zd 11523 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
142 peano2zm 11458 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14320, 142syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
144 dvdsmultr2 15068 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1456, 141, 143, 144syl3anc 1366 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
146140, 145mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
147 sq1 12998 . . . . . . . . . 10 (1↑2) = 1
148147oveq2i 6701 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
149 subsq 13012 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
15062, 32, 149sylancl 695 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
151148, 150syl5eqr 2699 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
152146, 151breqtrrd 4713 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
153 dvdsadd2b 15075 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1546, 28, 24, 152, 153syl112anc 1370 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15554, 154mpbird 247 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
156 subneg 10368 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15731, 32, 156sylancl 695 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
158155, 157breqtrrd 4713 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
159 oveq1 6697 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
160159oveq1d 6705 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
161160breq2d 4697 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
162161rspcev 3340 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16314, 158, 162syl2anc 694 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
164 neg1z 11451 . . . 4 -1 ∈ ℤ
165 eldifsn 4350 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1661, 165sylibr 224 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
167 lgsqr 25121 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
168164, 166, 167sylancr 696 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16910, 163, 168mpbir2and 977 . 2 (𝜑 → (-1 /L 𝑃) = 1)
170 m1lgs 25158 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
171166, 170syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
172169, 171mpbid 222 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cdif 3604  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305  cn 11058  2c2 11108  4c4 11110  0cn0 11330  cz 11415  cuz 11725   mod cmo 12708  cexp 12900  abscabs 14018  cdvds 15027   gcd cgcd 15263  cprime 15432   /L clgs 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-imas 16215  df-qus 16216  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-nzr 19306  df-rlreg 19331  df-domn 19332  df-idom 19333  df-assa 19360  df-asp 19361  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-evls 19554  df-evl 19555  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-coe1 19601  df-evl1 19729  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-mdeg 23860  df-deg1 23861  df-mon1 23935  df-uc1p 23936  df-q1p 23937  df-r1p 23938  df-lgs 25065
This theorem is referenced by:  2sqb  25202
  Copyright terms: Public domain W3C validator