Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2spthd Structured version   Visualization version   GIF version

Theorem 2spthd 27061
 Description: A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 24-Jan-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2wlkd.v 𝑉 = (Vtx‘𝐺)
2wlkd.i 𝐼 = (iEdg‘𝐺)
2trld.n (𝜑𝐽𝐾)
2spthd.n (𝜑𝐴𝐶)
Assertion
Ref Expression
2spthd (𝜑𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem 2spthd
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
6 2wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
7 2wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
8 2trld.n . . 3 (𝜑𝐽𝐾)
91, 2, 3, 4, 5, 6, 7, 82trld 27058 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
10 2spthd.n . . . . 5 (𝜑𝐴𝐶)
11 3anan32 1083 . . . . 5 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ ((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶))
124, 10, 11sylanbrc 701 . . . 4 (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
13 funcnvs3 13859 . . . 4 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → Fun ⟨“𝐴𝐵𝐶”⟩)
143, 12, 13syl2anc 696 . . 3 (𝜑 → Fun ⟨“𝐴𝐵𝐶”⟩)
151a1i 11 . . . . 5 (𝜑𝑃 = ⟨“𝐴𝐵𝐶”⟩)
1615cnveqd 5453 . . . 4 (𝜑𝑃 = ⟨“𝐴𝐵𝐶”⟩)
1716funeqd 6071 . . 3 (𝜑 → (Fun 𝑃 ↔ Fun ⟨“𝐴𝐵𝐶”⟩))
1814, 17mpbird 247 . 2 (𝜑 → Fun 𝑃)
19 isspth 26830 . 2 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
209, 18, 19sylanbrc 701 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  {cpr 4323   class class class wbr 4804  ◡ccnv 5265  Fun wfun 6043  ‘cfv 6049  ⟨“cs2 13786  ⟨“cs3 13787  Vtxcvtx 26073  iEdgciedg 26074  Trailsctrls 26797  SPathscspths 26819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-s2 13793  df-s3 13794  df-wlks 26705  df-trls 26799  df-spths 26823 This theorem is referenced by:  2pthond  27062  umgr2adedgspth  27068
 Copyright terms: Public domain W3C validator