MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2054
Description: A double specialization (see sp 2051). Another double specialization, closer to PM*11.1, is 2stdpc4 2352. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2051 . 2 (∀𝑦𝜑𝜑)
21sps 2053 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-ex 1703
This theorem is referenced by:  cbv1h  2266  csbie2t  3555  copsex2t  4947  wfrlem5  7404  fundmpss  31640  frrlem5  31758  bj-cbv1hv  32705  ax11-pm  32794  mbfresfi  33427  cotrintab  37740  pm14.123b  38447
  Copyright terms: Public domain W3C validator