Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbc6g Structured version   Visualization version   GIF version

Theorem 2sbc6g 39142
 Description: Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
2sbc6g ((𝐴𝐶𝐵𝐷) → (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑧,𝑤)

Proof of Theorem 2sbc6g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2782 . . . . . . 7 (𝑦 = 𝐵 → (𝑤 = 𝑦𝑤 = 𝐵))
21anbi2d 614 . . . . . 6 (𝑦 = 𝐵 → ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑧 = 𝑥𝑤 = 𝐵)))
32imbi1d 330 . . . . 5 (𝑦 = 𝐵 → (((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ ((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑)))
432albidv 2003 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑)))
5 dfsbcq 3589 . . . . 5 (𝑦 = 𝐵 → ([𝑦 / 𝑤]𝜑[𝐵 / 𝑤]𝜑))
65sbcbidv 3642 . . . 4 (𝑦 = 𝐵 → ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑[𝑥 / 𝑧][𝐵 / 𝑤]𝜑))
74, 6bibi12d 334 . . 3 (𝑦 = 𝐵 → ((∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑) ↔ (∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑)))
8 eqeq2 2782 . . . . . . 7 (𝑥 = 𝐴 → (𝑧 = 𝑥𝑧 = 𝐴))
98anbi1d 615 . . . . . 6 (𝑥 = 𝐴 → ((𝑧 = 𝑥𝑤 = 𝐵) ↔ (𝑧 = 𝐴𝑤 = 𝐵)))
109imbi1d 330 . . . . 5 (𝑥 = 𝐴 → (((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑) ↔ ((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑)))
11102albidv 2003 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑) ↔ ∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑)))
12 dfsbcq 3589 . . . 4 (𝑥 = 𝐴 → ([𝑥 / 𝑧][𝐵 / 𝑤]𝜑[𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
1311, 12bibi12d 334 . . 3 (𝑥 = 𝐴 → ((∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝐵) → 𝜑) ↔ [𝑥 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
14 vex 3354 . . . . 5 𝑥 ∈ V
1514sbc6 3614 . . . 4 ([𝑥 / 𝑧][𝑦 / 𝑤]𝜑 ↔ ∀𝑧(𝑧 = 𝑥[𝑦 / 𝑤]𝜑))
16 19.21v 2020 . . . . . 6 (∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦𝜑)) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦𝜑)))
17 impexp 437 . . . . . . 7 (((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ (𝑧 = 𝑥 → (𝑤 = 𝑦𝜑)))
1817albii 1895 . . . . . 6 (∀𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ ∀𝑤(𝑧 = 𝑥 → (𝑤 = 𝑦𝜑)))
19 vex 3354 . . . . . . . 8 𝑦 ∈ V
2019sbc6 3614 . . . . . . 7 ([𝑦 / 𝑤]𝜑 ↔ ∀𝑤(𝑤 = 𝑦𝜑))
2120imbi2i 325 . . . . . 6 ((𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ (𝑧 = 𝑥 → ∀𝑤(𝑤 = 𝑦𝜑)))
2216, 18, 213bitr4ri 293 . . . . 5 ((𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ ∀𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑))
2322albii 1895 . . . 4 (∀𝑧(𝑧 = 𝑥[𝑦 / 𝑤]𝜑) ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑))
2415, 23bitr2i 265 . . 3 (∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → 𝜑) ↔ [𝑥 / 𝑧][𝑦 / 𝑤]𝜑)
257, 13, 24vtocl2g 3421 . 2 ((𝐵𝐷𝐴𝐶) → (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
2625ancoms 455 1 ((𝐴𝐶𝐵𝐷) → (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1629   = wceq 1631   ∈ wcel 2145  [wsbc 3587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-sbc 3588 This theorem is referenced by:  pm14.123a  39152
 Copyright terms: Public domain W3C validator