Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sb5ndALT Structured version   Visualization version   GIF version

Theorem 2sb5ndALT 39482
Description: Equivalence for double substitution 2sb5 2471 without distinct 𝑥, 𝑦 requirement. 2sb5nd 39093 is derived from 2sb5ndVD 39460. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 39460. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2sb5ndALT ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem 2sb5ndALT
StepHypRef Expression
1 ax6e2ndeq 39092 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 anabs5 868 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3 2pm13.193 39085 . . . . . . . . 9 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
43exbii 1814 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
5 hbs1 2464 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
6 id 22 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
7 axc11 2347 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
86, 7syl 17 . . . . . . . . . . . 12 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
9 pm3.33 608 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ∧ (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
105, 8, 9sylancr 696 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
11 hbs1 2464 . . . . . . . . . . . . . 14 ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
1211sbt 2447 . . . . . . . . . . . . 13 [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
13 sbi1 2420 . . . . . . . . . . . . 13 ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑))
1412, 13ax-mp 5 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑)
15 id 22 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
16 axc11n 2342 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
1716con3i 150 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1815, 17syl 17 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
19 sbal2 2489 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2018, 19syl 17 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21 imbi2 337 . . . . . . . . . . . . 13 (([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
2221biimpac 502 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ∧ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2314, 20, 22sylancr 696 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2410, 23pm2.61i 176 . . . . . . . . . 10 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2524nf5i 2064 . . . . . . . . 9 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
262519.41 2141 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
274, 26bitr3i 266 . . . . . . 7 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2827exbii 1814 . . . . . 6 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
29 nfs1v 2465 . . . . . . 7 𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
302919.41 2141 . . . . . 6 (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3128, 30bitr2i 265 . . . . 5 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3231anbi2i 730 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
332, 32bitr3i 266 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
34 pm5.32 669 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
3533, 34mpbir 221 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
361, 35sylbi 207 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wal 1521   = wceq 1523  wex 1744  [wsb 1937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-ne 2824  df-v 3233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator