![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3179 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3179 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wrex 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-rex 3056 |
This theorem is referenced by: rexnal3 3182 ralnex2 3183 ralnex3 3184 3reeanv 3246 addcompr 10035 mulcompr 10037 4fvwrd4 12653 ntrivcvgmul 14833 prodmo 14865 pythagtriplem2 15724 pythagtrip 15741 isnsgrp 17489 efgrelexlemb 18363 ordthaus 21390 regr1lem2 21745 fmucndlem 22296 dfcgra2 25920 axpasch 26020 axeuclid 26042 axcontlem4 26046 umgr2edg1 26302 wwlksnwwlksnon 27033 xrofsup 29842 poseq 32059 madeval2 32242 altopelaltxp 32389 brsegle 32521 mzpcompact2lem 37816 sbc4rex 37855 7rexfrabdioph 37866 expdiophlem1 38090 fourierdlem42 40869 ldepslinc 42808 |
Copyright terms: Public domain | W3C validator |