Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem2 Structured version   Visualization version   GIF version

Theorem 2reu5lem2 3447
 Description: Lemma for 2reu5 3449. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem2 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reu5lem2
StepHypRef Expression
1 df-rmo 2949 . . 3 (∃*𝑦𝐵 𝜑 ↔ ∃*𝑦(𝑦𝐵𝜑))
21ralbii 3009 . 2 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑))
3 df-ral 2946 . . 3 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
4 moanimv 2560 . . . . . 6 (∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)))
54bicomi 214 . . . . 5 ((𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)) ↔ ∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
6 3anass 1059 . . . . . . 7 ((𝑥𝐴𝑦𝐵𝜑) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝜑)))
76bicomi 214 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴𝑦𝐵𝜑))
87mobii 2521 . . . . 5 (∃*𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
95, 8bitri 264 . . . 4 ((𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)) ↔ ∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
109albii 1787 . . 3 (∀𝑥(𝑥𝐴 → ∃*𝑦(𝑦𝐵𝜑)) ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
113, 10bitri 264 . 2 (∀𝑥𝐴 ∃*𝑦(𝑦𝐵𝜑) ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
122, 11bitri 264 1 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦𝐵𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   ∈ wcel 2030  ∃*wmo 2499  ∀wral 2941  ∃*wrmo 2944 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-eu 2502  df-mo 2503  df-ral 2946  df-rmo 2949 This theorem is referenced by:  2reu5lem3  3448
 Copyright terms: Public domain W3C validator