Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu4 Structured version   Visualization version   GIF version

Theorem 2reu4 41704
Description: Definition of double restricted existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"), analogous to 2eu4 2704. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu4
StepHypRef Expression
1 reurex 3308 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴𝑦𝐵 𝜑)
2 rexn0 4213 . . . 4 (∃𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
31, 2syl 17 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅)
4 reurex 3308 . . . 4 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃𝑦𝐵𝑥𝐴 𝜑)
5 rexn0 4213 . . . 4 (∃𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
64, 5syl 17 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅)
73, 6anim12i 592 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
8 ne0i 4067 . . . . . 6 (𝑥𝐴𝐴 ≠ ∅)
9 ne0i 4067 . . . . . 6 (𝑦𝐵𝐵 ≠ ∅)
108, 9anim12i 592 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1110a1d 25 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)))
1211rexlimivv 3183 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
1312adantr 466 . 2 ((∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
14 2reu4a 41703 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))))
157, 13, 14pm5.21nii 367 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2144  wne 2942  wral 3060  wrex 3061  ∃!wreu 3062  c0 4061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-v 3351  df-dif 3724  df-nul 4062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator