Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu3 Structured version   Visualization version   GIF version

Theorem 2reu3 41509
Description: Double restricted existential uniqueness, analogous to 2eu3 2584. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Assertion
Ref Expression
2reu3 (∀𝑥𝐴𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu3
StepHypRef Expression
1 orcom 401 . . . . . . 7 ((∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ (∃*𝑦𝐵 𝜑 ∨ ∃*𝑥𝐴 𝜑))
21ralbii 3009 . . . . . 6 (∀𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ ∀𝑦𝐵 (∃*𝑦𝐵 𝜑 ∨ ∃*𝑥𝐴 𝜑))
3 nfrmo1 3140 . . . . . . 7 𝑦∃*𝑦𝐵 𝜑
43r19.32 41488 . . . . . 6 (∀𝑦𝐵 (∃*𝑦𝐵 𝜑 ∨ ∃*𝑥𝐴 𝜑) ↔ (∃*𝑦𝐵 𝜑 ∨ ∀𝑦𝐵 ∃*𝑥𝐴 𝜑))
52, 4bitri 264 . . . . 5 (∀𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ (∃*𝑦𝐵 𝜑 ∨ ∀𝑦𝐵 ∃*𝑥𝐴 𝜑))
6 orcom 401 . . . . 5 ((∃*𝑦𝐵 𝜑 ∨ ∀𝑦𝐵 ∃*𝑥𝐴 𝜑) ↔ (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑))
75, 6bitri 264 . . . 4 (∀𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑))
87ralbii 3009 . . 3 (∀𝑥𝐴𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ ∀𝑥𝐴 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑))
9 nfcv 2793 . . . . 5 𝑥𝐵
10 nfrmo1 3140 . . . . 5 𝑥∃*𝑥𝐴 𝜑
119, 10nfral 2974 . . . 4 𝑥𝑦𝐵 ∃*𝑥𝐴 𝜑
1211r19.32 41488 . . 3 (∀𝑥𝐴 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑))
138, 12bitri 264 . 2 (∀𝑥𝐴𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) ↔ (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑))
14 2reu1 41507 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 → (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ↔ (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑)))
1514biimpd 219 . . . . . 6 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 → (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 → (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑)))
16 ancom 465 . . . . . 6 ((∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
1715, 16syl6ib 241 . . . . 5 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 → (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
1817adantld 482 . . . 4 (∀𝑦𝐵 ∃*𝑥𝐴 𝜑 → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
19 2reu1 41507 . . . . . 6 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
2019biimpd 219 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
2120adantrd 483 . . . 4 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
2218, 21jaoi 393 . . 3 ((∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑) → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) → (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
23 2rexreu 41506 . . . 4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
24 2rexreu 41506 . . . . 5 ((∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑) → ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑)
2524ancoms 468 . . . 4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑)
2623, 25jca 553 . . 3 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑))
2722, 26impbid1 215 . 2 ((∀𝑦𝐵 ∃*𝑥𝐴 𝜑 ∨ ∀𝑥𝐴 ∃*𝑦𝐵 𝜑) → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
2813, 27sylbi 207 1 (∀𝑥𝐴𝑦𝐵 (∃*𝑥𝐴 𝜑 ∨ ∃*𝑦𝐵 𝜑) → ((∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  wral 2941  wrex 2942  ∃!wreu 2943  ∃*wrmo 2944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator