![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu2 | Structured version Visualization version GIF version |
Description: Double restricted existential uniqueness, analogous to 2eu2 2692. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
Ref | Expression |
---|---|
2reu2 | ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurmo 3300 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 2rmorex 3553 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) | |
3 | 2reu1 41692 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | |
4 | simpl 474 | . . . 4 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
5 | 3, 4 | syl6bi 243 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
7 | 2rexreu 41691 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
8 | 7 | expcom 450 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) |
9 | 6, 8 | impbid 202 | 1 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wral 3050 ∃wrex 3051 ∃!wreu 3052 ∃*wrmo 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 |
This theorem is referenced by: 2reu8 41698 |
Copyright terms: Public domain | W3C validator |