![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
2ralbidva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | anassrs 683 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 ↔ 𝜒)) |
3 | 2 | ralbidva 3123 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralbidva 3123 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 3055 |
This theorem is referenced by: disjxun 4802 isocnv3 6745 isotr 6749 f1oweALT 7317 fnmpt2ovd 7420 tosso 17237 pospropd 17335 isipodrs 17362 mndpropd 17517 mhmpropd 17542 efgred 18361 cmnpropd 18402 ringpropd 18782 lmodprop2d 19127 lsspropd 19219 islmhm2 19240 lmhmpropd 19275 assapropd 19529 islindf4 20379 scmatmats 20519 cpmatel2 20720 1elcpmat 20722 m2cpminvid2 20762 decpmataa0 20775 pmatcollpw2lem 20784 connsub 21426 hausdiag 21650 ist0-4 21734 ismet2 22339 txmetcnp 22553 txmetcn 22554 metuel2 22571 metucn 22577 isngp3 22603 nlmvscn 22692 isclmp 23097 isncvsngp 23149 ipcn 23245 iscfil2 23264 caucfil 23281 cfilresi 23293 ulmdvlem3 24355 cxpcn3 24688 tgcgr4 25625 perpcom 25807 brbtwn2 25984 colinearalglem2 25986 eengtrkg 26064 isarchi2 30048 elmrsubrn 31724 isbnd3b 33897 iscvlat2N 35114 ishlat3N 35144 gicabl 38171 isdomn3 38284 mgmpropd 42285 mgmhmpropd 42295 lidlmmgm 42435 lindslinindsimp2 42762 |
Copyright terms: Public domain | W3C validator |