![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ralbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 3112 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | ralbidv 3112 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wral 3038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 3043 |
This theorem is referenced by: cbvral3v 3308 ralxpxfr2d 3454 poeq1 5178 soeq1 5194 isoeq1 6718 isoeq2 6719 isoeq3 6720 fnmpt2ovd 7408 smoeq 7604 xpf1o 8275 nqereu 9914 dedekind 10363 dedekindle 10364 seqcaopr2 13002 wrd2ind 13648 addcn2 14494 mulcn2 14496 mreexexd 16481 catlid 16516 catrid 16517 isfunc 16696 funcres2b 16729 isfull 16742 isfth 16746 fullres2c 16771 isnat 16779 evlfcl 17034 uncfcurf 17051 isprs 17102 isdrs 17106 ispos 17119 istos 17207 isdlat 17365 sgrp1 17465 ismhm 17509 issubm 17519 sgrp2nmndlem4 17587 isnsg 17795 isghm 17832 isga 17895 pmtrdifwrdel 18076 sylow2blem2 18207 efglem 18300 efgi 18303 efgredlemb 18330 efgred 18332 frgpuplem 18356 iscmn 18371 ring1 18773 isirred 18870 islmod 19040 lmodlema 19041 lssset 19107 islssd 19109 islmhm 19200 islmhm2 19211 isobs 20237 dmatel 20472 dmatmulcl 20479 scmateALT 20491 mdetunilem3 20593 mdetunilem4 20594 mdetunilem9 20599 cpmatel 20689 chpscmat 20820 hausnei2 21330 dfconn2 21395 llyeq 21446 nllyeq 21447 isucn2 22255 iducn 22259 ispsmet 22281 ismet 22300 isxmet 22301 metucn 22548 ngptgp 22612 nlmvscnlem1 22662 xmetdcn2 22812 addcnlem 22839 elcncf 22864 ipcnlem1 23215 cfili 23237 c1lip1 23930 aalioulem5 24261 aalioulem6 24262 aaliou 24263 aaliou2 24265 aaliou2b 24266 ulmcau 24319 ulmdvlem3 24326 cxpcn3lem 24658 dvdsmulf1o 25090 chpdifbndlem2 25413 pntrsumbnd2 25426 istrkgb 25524 axtgsegcon 25533 axtg5seg 25534 axtgpasch 25536 axtgeucl 25541 iscgrg 25577 isismt 25599 isperp2 25780 f1otrg 25921 axcontlem10 26023 axcontlem12 26025 isgrpo 27631 isablo 27680 vacn 27829 smcnlem 27832 lnoval 27887 islno 27888 isphg 27952 ajmoi 27994 ajval 27997 adjmo 28971 elcnop 28996 ellnop 28997 elunop 29011 elhmop 29012 elcnfn 29021 ellnfn 29022 adjeu 29028 adjval 29029 adj1 29072 adjeq 29074 cnlnadjlem9 29214 cnlnadjeu 29217 cnlnssadj 29219 isst 29352 ishst 29353 cdj1i 29572 cdj3i 29580 resspos 29939 resstos 29940 isomnd 29981 isslmd 30035 slmdlema 30036 isorng 30079 qqhucn 30316 ismntop 30350 axtgupdim2OLD 31026 txpconn 31492 nn0prpw 32595 heicant 33726 equivbnd 33871 isismty 33882 heibor1lem 33890 iccbnd 33921 isass 33927 elghomlem1OLD 33966 elghomlem2OLD 33967 isrngohom 34046 iscom2 34076 pridlval 34114 ispridl 34115 isdmn3 34155 inecmo 34412 islfl 34819 isopos 34939 psubspset 35502 islaut 35841 ispautN 35857 ltrnset 35876 isltrn 35877 istrnN 35916 istendo 36519 clsk1independent 38815 sprsymrelfolem2 42222 sprsymrelfo 42226 ismgmhm 42262 issubmgm 42268 isrnghm 42371 lidlmsgrp 42405 lidlrng 42406 dmatALTbasel 42670 lindslinindsimp2 42731 lmod1 42760 |
Copyright terms: Public domain | W3C validator |