Step | Hyp | Ref
| Expression |
1 | | 2pthon3v.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
2 | | edgval 26161 |
. . . . . . . . . 10
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
3 | 1, 2 | eqtri 2782 |
. . . . . . . . 9
⊢ 𝐸 = ran (iEdg‘𝐺) |
4 | 3 | eleq2i 2831 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺)) |
5 | | 2pthon3v.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Vtx‘𝐺) |
6 | | eqid 2760 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
7 | 5, 6 | uhgrf 26177 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
8 | 7 | ffnd 6207 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
9 | | fvelrnb 6406 |
. . . . . . . . 9
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵})) |
10 | 8, 9 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵})) |
11 | 4, 10 | syl5bb 272 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵})) |
12 | 3 | eleq2i 2831 |
. . . . . . . 8
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺)) |
13 | | fvelrnb 6406 |
. . . . . . . . 9
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) |
14 | 8, 13 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) |
15 | 12, 14 | syl5bb 272 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) |
16 | 11, 15 | anbi12d 749 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))) |
17 | 16 | adantr 472 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))) |
18 | 17 | adantr 472 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))) |
19 | | reeanv 3245 |
. . . 4
⊢
(∃𝑖 ∈ dom
(iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) |
20 | 18, 19 | syl6bbr 278 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))) |
21 | | df-s2 13813 |
. . . . . . . 8
⊢
〈“𝑖𝑗”〉 =
(〈“𝑖”〉 ++ 〈“𝑗”〉) |
22 | 21 | ovexi 6843 |
. . . . . . 7
⊢
〈“𝑖𝑗”〉 ∈
V |
23 | | df-s3 13814 |
. . . . . . . 8
⊢
〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
24 | 23 | ovexi 6843 |
. . . . . . 7
⊢
〈“𝐴𝐵𝐶”〉 ∈ V |
25 | 22, 24 | pm3.2i 470 |
. . . . . 6
⊢
(〈“𝑖𝑗”〉 ∈ V ∧
〈“𝐴𝐵𝐶”〉 ∈ V) |
26 | | eqid 2760 |
. . . . . . . 8
⊢
〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐵𝐶”〉 |
27 | | eqid 2760 |
. . . . . . . 8
⊢
〈“𝑖𝑗”〉 =
〈“𝑖𝑗”〉 |
28 | | simp-4r 827 |
. . . . . . . 8
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
29 | | 3simpb 1145 |
. . . . . . . . 9
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
30 | 29 | ad3antlr 769 |
. . . . . . . 8
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
31 | | eqimss2 3799 |
. . . . . . . . . 10
⊢
(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) |
32 | | eqimss2 3799 |
. . . . . . . . . 10
⊢
(((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)) |
33 | 31, 32 | anim12i 591 |
. . . . . . . . 9
⊢
((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))) |
34 | 33 | adantl 473 |
. . . . . . . 8
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))) |
35 | | fveq2 6353 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑗)) |
36 | 35 | eqeq1d 2762 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵})) |
37 | 36 | anbi1d 743 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))) |
38 | | eqtr2 2780 |
. . . . . . . . . . . . . 14
⊢
((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶}) |
39 | | 3simpa 1143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
40 | | 3simpc 1147 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
41 | | preq12bg 4530 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)))) |
42 | 39, 40, 41 | syl2anc 696 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)))) |
43 | | eqneqall 2943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → 𝑖 ≠ 𝑗)) |
44 | 43 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 → 𝑖 ≠ 𝑗)) |
45 | 44 | 3ad2ant1 1128 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 → 𝑖 ≠ 𝑗)) |
46 | 45 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 = 𝐵 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗)) |
47 | 46 | adantr 472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗)) |
48 | | eqneqall 2943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 = 𝐶 → (𝐴 ≠ 𝐶 → 𝑖 ≠ 𝑗)) |
49 | 48 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ≠ 𝐶 → (𝐴 = 𝐶 → 𝑖 ≠ 𝑗)) |
50 | 49 | 3ad2ant2 1129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐶 → 𝑖 ≠ 𝑗)) |
51 | 50 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 = 𝐶 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗)) |
52 | 51 | adantr 472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐵) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗)) |
53 | 47, 52 | jaoi 393 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐵)) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗)) |
54 | 42, 53 | syl6bi 243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → 𝑖 ≠ 𝑗))) |
55 | 54 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖 ≠ 𝑗))) |
56 | 55 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖 ≠ 𝑗))) |
57 | 56 | imp 444 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖 ≠ 𝑗)) |
58 | 57 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → 𝑖 ≠ 𝑗)) |
59 | 38, 58 | syl 17 |
. . . . . . . . . . . . 13
⊢
((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → 𝑖 ≠ 𝑗)) |
60 | 37, 59 | syl6bi 243 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → 𝑖 ≠ 𝑗))) |
61 | 60 | com23 86 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖 ≠ 𝑗))) |
62 | | 2a1 28 |
. . . . . . . . . . 11
⊢ (𝑖 ≠ 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖 ≠ 𝑗))) |
63 | 61, 62 | pm2.61ine 3015 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖 ≠ 𝑗)) |
64 | 63 | adantr 472 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖 ≠ 𝑗)) |
65 | 64 | imp 444 |
. . . . . . . 8
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖 ≠ 𝑗) |
66 | | simplr2 1263 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴 ≠ 𝐶) |
67 | 66 | adantr 472 |
. . . . . . . 8
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴 ≠ 𝐶) |
68 | 26, 27, 28, 30, 34, 5, 6, 65, 67 | 2pthond 27083 |
. . . . . . 7
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 〈“𝑖𝑗”〉(𝐴(SPathsOn‘𝐺)𝐶)〈“𝐴𝐵𝐶”〉) |
69 | | s2len 13854 |
. . . . . . 7
⊢
(♯‘〈“𝑖𝑗”〉) = 2 |
70 | 68, 69 | jctir 562 |
. . . . . 6
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (〈“𝑖𝑗”〉(𝐴(SPathsOn‘𝐺)𝐶)〈“𝐴𝐵𝐶”〉 ∧
(♯‘〈“𝑖𝑗”〉) = 2)) |
71 | | breq12 4809 |
. . . . . . . 8
⊢ ((𝑓 = 〈“𝑖𝑗”〉 ∧ 𝑝 = 〈“𝐴𝐵𝐶”〉) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ 〈“𝑖𝑗”〉(𝐴(SPathsOn‘𝐺)𝐶)〈“𝐴𝐵𝐶”〉)) |
72 | | fveq2 6353 |
. . . . . . . . . 10
⊢ (𝑓 = 〈“𝑖𝑗”〉 → (♯‘𝑓) =
(♯‘〈“𝑖𝑗”〉)) |
73 | 72 | eqeq1d 2762 |
. . . . . . . . 9
⊢ (𝑓 = 〈“𝑖𝑗”〉 → ((♯‘𝑓) = 2 ↔
(♯‘〈“𝑖𝑗”〉) = 2)) |
74 | 73 | adantr 472 |
. . . . . . . 8
⊢ ((𝑓 = 〈“𝑖𝑗”〉 ∧ 𝑝 = 〈“𝐴𝐵𝐶”〉) → ((♯‘𝑓) = 2 ↔
(♯‘〈“𝑖𝑗”〉) = 2)) |
75 | 71, 74 | anbi12d 749 |
. . . . . . 7
⊢ ((𝑓 = 〈“𝑖𝑗”〉 ∧ 𝑝 = 〈“𝐴𝐵𝐶”〉) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2) ↔ (〈“𝑖𝑗”〉(𝐴(SPathsOn‘𝐺)𝐶)〈“𝐴𝐵𝐶”〉 ∧
(♯‘〈“𝑖𝑗”〉) = 2))) |
76 | 75 | spc2egv 3435 |
. . . . . 6
⊢
((〈“𝑖𝑗”〉 ∈ V ∧
〈“𝐴𝐵𝐶”〉 ∈ V) →
((〈“𝑖𝑗”〉(𝐴(SPathsOn‘𝐺)𝐶)〈“𝐴𝐵𝐶”〉 ∧
(♯‘〈“𝑖𝑗”〉) = 2) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))) |
77 | 25, 70, 76 | mpsyl 68 |
. . . . 5
⊢
(((((𝐺 ∈
UHGraph ∧ (𝐴 ∈
𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)) |
78 | 77 | ex 449 |
. . . 4
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))) |
79 | 78 | rexlimdvva 3176 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))) |
80 | 20, 79 | sylbid 230 |
. 2
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))) |
81 | 80 | 3impia 1110 |
1
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)) |