MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthnloop Structured version   Visualization version   GIF version

Theorem 2pthnloop 26862
Description: A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 27331. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
2pthnloop ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem 2pthnloop
StepHypRef Expression
1 pthiswlk 26858 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkv 26743 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
31, 2syl 17 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
4 ispth 26854 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
54a1i 11 . . . . . 6 (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
6 istrl 26828 . . . . . . . . . . . 12 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
7 eqid 2771 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
8 2pthnloop.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
97, 8iswlkg 26744 . . . . . . . . . . . . 13 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))))
109anbi1d 615 . . . . . . . . . . . 12 (𝐺 ∈ V → ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
116, 10syl5bb 272 . . . . . . . . . . 11 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹)))
12 pthdadjvtx 26861 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1312ad5ant245 1454 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
1413neneqd 2948 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)))
15 ifpfal 1061 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
1615adantl 467 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))))
17 fvexd 6346 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ∈ V)
18 fvexd 6346 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃‘(𝑖 + 1)) ∈ V)
19 neqne 2951 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1)))
20 fvexd 6346 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → (𝐼‘(𝐹𝑖)) ∈ V)
21 prsshashgt1 13400 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃𝑖) ∈ V ∧ (𝑃‘(𝑖 + 1)) ∈ V ∧ (𝑃𝑖) ≠ (𝑃‘(𝑖 + 1))) ∧ (𝐼‘(𝐹𝑖)) ∈ V) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2217, 18, 19, 20, 21syl31anc 1479 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2322adantl 467 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2416, 23sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ ¬ (𝑃𝑖) = (𝑃‘(𝑖 + 1))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2514, 24mpdan 667 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2625ralimdva 3111 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
2726ex 397 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (1 < (♯‘𝐹) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2827com23 86 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
2928exp31 406 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐹(Paths‘𝐺)𝑃 → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
3029com24 95 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
31303impia 1109 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (((Fun 𝐹 ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3231exp4c 419 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) → (Fun 𝐹 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3332imp 393 . . . . . . . . . . . 12 (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))))
3433a1i 11 . . . . . . . . . . 11 (𝐺 ∈ V → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), (𝐼‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ (𝐼‘(𝐹𝑖)))) ∧ Fun 𝐹) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3511, 34sylbid 230 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3635com24 95 . . . . . . . . 9 (𝐺 ∈ V → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐹(Trails‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
3736com14 96 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))))
38373imp 1101 . . . . . . 7 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
3938com12 32 . . . . . 6 (𝐺 ∈ V → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
405, 39sylbid 230 . . . . 5 (𝐺 ∈ V → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
41403ad2ant1 1127 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))))
423, 41mpcom 38 . . 3 (𝐹(Paths‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
4342pm2.43i 52 . 2 (𝐹(Paths‘𝐺)𝑃 → (1 < (♯‘𝐹) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖)))))
4443imp 393 1 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  if-wif 1049  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351  cin 3722  wss 3723  c0 4063  {csn 4317  {cpr 4319   class class class wbr 4787  ccnv 5249  dom cdm 5250  cres 5252  cima 5253  Fun wfun 6024  wf 6026  cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280  cle 10281  2c2 11276  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487  Vtxcvtx 26095  iEdgciedg 26096  Walkscwlks 26727  Trailsctrls 26822  Pathscpths 26843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-xnn0 11571  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-wlks 26730  df-trls 26824  df-pths 26847
This theorem is referenced by:  upgr2pthnlp  26863
  Copyright terms: Public domain W3C validator